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ABSTRACT
Deep neural networks (DNNs) are vulnerable to adversarial attacks.
Existing adversarial defense approaches mostly use a large number
of labels during the training step to improve the model’s robustness.
However, the labeling typically requires a lot of resources and is
time-consuming, especially when the annotation is hard to generate
(e.g., an emergency scene in autopilot). In this paper, we propose an
instance-level unsupervised perturbation to replace the supervised
class-level adversarial sample in the robust training. The unsuper-
vised perturbation is generated on various transformed views of
single input, which aims to make the model confuse the instance-
level discrimination of this specific input. We further introduce the
contrastive learning based adversarial learning(UPAT), which max-
imizes the agreement between the transformed instance with its
corresponding unsupervised perturbed output, and encourages the
model to suppress the vulnerability in the embedding space. We
conduct comprehensive experiments on three image benchmarks,
and the quantitative results demonstrate that our defense approach
consistently outperforms prior state-of-the-art techniques, by im-
proving the defense ability efficiently on various white and black
box attacks.
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Figure 1: Difference between the class-level and instance-level
adversarial attack.

1 INTRODUCTION
Despite outstanding performance on various deep learning/data min-
ing scenarios[4, 11, 13, 16], deep neural networks (DNNs) are sus-
ceptible to adversarial attacks [12, 28]. By adding small indistin-
guishable perturbations on the inputs, the adversarial example for an
original image is produced, making the DNNs output a wrong pre-
diction with high probability. This phenomenon is known as a class-
level adversarial attack (as shown in the first row of Figure 1), which
attracts increasing concerns on the safety-critical applications, such
as self-driving cars and speech recognition[5, 21, 25, 27, 29, 30].
Although many existing approaches have been proposed to improve
the model robustness against adversarial examples, such as adver-
sarial training [12, 28], Generate Adversarial Network[18]. They
require a large amount of labeled data during the training step, which
may result in the following challenges: 1) resource consuming, the
collection of the labeled data and relevant adversarial training are
expensive, so they restrict relative further applicability to real-world
large-scale datasets [22]; 2) label leakage[20] which may cause the
model over-fitting on some specific perturbations, and weaken the
generalization of the model on other unseen attacks (for example, a
model trained on 𝐿∞ and test on 𝐿2). Therefore, such a phenomenon
shows the weakness of existing defense approaches.
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In this paper, we focus on the label-free setting based adversarial
pre-training, which does not require the label to generate the class-
level perturbation, for the adversarial training step. We propose a
contrastive representation learning (UPAT) framework to enhance
the generalization and robustness of the DNN model. The intuition
is to generate unsupervised perturbation, an instance-level based
adversarial sample, then apply the contrastive learning[6, 8, 15] on
both adversary and clean input to reduce the vulnerability in the em-
bedding space. As shown in Figure. 1, the instance-level adversarial
attack on a single transformed sample (e.g., 𝑥𝑖 ) aims to confuse the
model’s instance-discrimination, and make the model misclassify
this sample as another instance (e.g., 𝑥 𝑗 ). The generation of such
adversarial sample could be formulated by maximizing a comparison
metric (e.g., MSE) between the perturbation and the transformed[10]
input. Next, we use the generated perturbation on the adversarial
training step to learn robust DNNs, specifically, UPAT, to maximize
the agreement between the transformed samples and such pertur-
bations by contrastive learning [8]. Our work aims to suppress the
vulnerability and obtain a more robust embedding space, to defend
against the adversarial perturbation. The proposed UPAT pipeline
could benefit the subsequent fine-tuning operation, such as the ad-
versarial training and input-process [31]. Besides our work, [17] and
[7] also apply the self-supervised learning on the adversarial robust-
ness. However, both of them still require labeled data to generate
the adversarial samples, and the perturbation under the label-free
problem setting is still leaving unexplored.

Our contributions are summarized as follows: (1) We introduce
the unsupervised perturbation, which is an instance-level adversarial
sample without labeling requirement; (2) we propose the adversar-
ial contrastive representation learning framework to improve the
instance-discrimination on clean input and corresponding instance-
wise adversarial perturbations. UPAT aims to enhance the model
robustness and further reduce the label leakage on unseen attacks;
(3) we provide extensive experimental validation of UPAT under the
strong and unseen type of the white-box attacks, the results demon-
strate the proposed UPAT outperforms the cutting-edge supervised
adversarial learning approaches.

2 RELATIVE WORK
2.1 Adversarial Sample
Adversary is typically generated by adding small perturbation to
clean input, it aims to make AI system producing erroneous outputs.
For the training set 𝐷 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 which has total 𝑁 labeled sam-
ples 𝑥𝑖 , a supervised learning model 𝑓𝜃 that has a mapping function
from input to the corresponding label: 𝑓𝜃 (𝑥𝑖 ) = 𝑦𝑖 , where 𝜃 is the
parameters of model 𝑓 . The adversarial attack allows an adversary
to eavesdrop the optimization and gradients of the existing model.
For the given clean input 𝑥𝑖 to a target model, the adversarial attack
𝛿 is required to perturb the input into 𝑥 with bounded magnitude
𝑝-norm (𝑝 = 1, 2,∞) as: 𝑓 (𝑥 + 𝛿) ≠ 𝑓 (𝑥) with | |𝛿 | |𝑝 <= 𝜖. Here, the
strength of the perturbations 𝛿 should not be greater than 𝜖 so that
the perturbations remain imperceptible to people’s eyes[14]. Such
formulation generalizes across different types of gradient attacks,
like the PGD [2], which performs the universal first-order adversary,

with 𝐾 iterated step to form the attack:

𝑥𝐾+1𝑖 =
∏
𝐵

(𝑥𝑘𝑖 + 𝛼𝑠𝑖𝑔𝑛(∇𝑥𝑖𝐿𝐶𝐸 (𝑥𝑖 , 𝑦𝑖 ;𝜃 ))) (1)

2.2 Defense Mechanisms.
Various defense mechanisms have been employed to combat the
threat from adversarial attacks. The most common method is Ad-
versarial Training (AT), which is based on augmenting the training
dataset with adversarial examples [12, 24, 33]. The main idea is to
minimize the loss of such adversarial perturbations, which is often
called adversarial learning[22]. They solve the min-max optimiza-
tion problem that for the adversarial sample 𝑥 ′ ∈ 𝐵 (or described as
adding 𝛿 on input 𝑥𝑖 with | |𝛿 | |∞ ≤ 𝜖), the generic form is:

argmin
𝜃

E(𝑥𝑖 ,𝑦𝑖 ) ∈𝐷 [max
𝑥 ′∈𝐵

ℓ (𝑥 ′𝑖 , 𝑦𝑖 ;𝜃 )] (2)

Recent works focus on improving the robustness of learned em-
bedding space, such as TRADES[32], which applies Kullback-Leibler
divergence loss between a clean input and its adversarial version
to obtain more robust latent space. We generate the self-supervised
instance-wise adversarial sample to improve the model robustness
and it is different from the previous class-level based adversarial
training.

2.3 Self-Supervised Learning
For now, [9, 17] approaches introduce a self-supervision technique
to train a robust embedding, with the rotation prediction or transfor-
mation ensemble and co-optimized with the adversarial pre-training.
The main advantage of Self-Supervised Learning (SSL) is that it
generates supervised learning problems out of unlabeled data, and
optimizes a feature representation based on them. Previous SSL en-
courage the model to solve a pretext task for representation learning,
which will be later used for a (down-stream) specific supervised
learning task. These tasks usually involve hiding certain informa-
tion about the input, and trains the model to recover the missing
information [26].

In this paper, we apply the recently contrastive learning[8, 15]
based SSL that leverages the instance-level identity. This approach
mainly applies the contrastive loss to maximize the similarity be-
tween different augmentations of the “same" input in the latent space,
and minimize the agreement between the “different" inputs, like the
SimCLR[8]. Such approaches has shown highly effective on learned
embedding.

3 APPROACH
3.1 Unsupervised Perturbation
Different from the class-level adversarial samples that apply the
gradient directions specific to the model parameters 𝜃 , then cre-
ate adversarial samples 𝑥𝑎𝑑𝑣 to make the model confuse on class-
boundary. We propose the unsupervised perturbation, which is the
instance-wise attack that perturbs the representation space without
any class label. Specifically, given a sample of an input instance,
we generate a perturbation to confuse the model by maximizing the
loss on feature embedding from different transforms (on the same
input), so the model would make the wrong decision to classify it
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Figure 2: Overview of the UPAT for the pre-training and fine-
tuning process.

as another sample. The metric losses such as MSE function could
be used for discrimination among the transformed (or perturbed)
instances. The perturbation is encouraged to maximize such metric
loss on the representation for instance-discrimination, the formula is
described as follows:

𝑇 (𝑥𝑖 )𝑘+1 =
∏

𝐵 (𝑇 (𝑥𝑖 ),𝜖)
[𝑇 (𝑥𝑖 )𝑘 + 𝛼𝑠𝑖𝑔𝑛(∇𝑇 (𝑥𝑖 )𝑘𝐿(𝑡 (𝑥𝑖 ), 𝑡

′(𝑥𝑖 )))]

𝑠 .𝑡, 𝑇 (𝑥𝑖 ) ∈ {𝑡 (𝑥𝑖 ), 𝑡 ′(𝑥𝑖 )}
(3)

Where 𝑡 (𝑥) and 𝑡 (𝑥)′ are the augmented input under the stochastic
data transformations 𝑡, 𝑡 ′ ∈ T , the 𝛼 is the step size of the attacks,
and 𝐿 is the MSE loss function. Finally, the instance-level adversarial
sample of 𝑥𝑖 could be denoted as 𝑥𝑎𝑑𝑣

𝑖
= 𝑇 (𝑥𝑖 ) + 𝛿 , and the 𝑇 (·)

indicates one of the augmented operations from {𝑡 (·), 𝑡 ′(·)}. Because
of the same identity of different transformed input 𝑡 (𝑥) and 𝑡 ′(𝑥),
both of them are selected to generate instance-level attacks and find
optimal perturbation. We summarize our self-supervised learned
adversarial sample in Algorithm. 1:

Algorithm 1 Instance-level Unsupervised Perturbation
Require: 𝑓𝜃 - feature extractor; 𝑔 - projector; 𝑥 - clean input; T -

input transformation family; 𝐾 - iteration times; 𝜖 - perturbation
bound

1: For 𝑥 , get the augmented output 𝑡 (𝑥), 𝑡 ′(𝑥), (𝑡, 𝑡 ′ ∈ T )
2: for 𝑘 = 1 → 𝐾 do
3: Forward pass 𝑡 (𝑥), 𝑡 ′(𝑥) through 𝑓𝜃 and 𝑔, get 𝑧, 𝑧′

4: Select one type of augmented 𝑇 ∈ {𝑡, 𝑡 ′} as 𝑇 (𝑥)
5: Compute gradient 𝑔𝑘 = ∇𝑇𝑥 𝐿(𝑧, 𝑧′).
6: Perturbation: 𝑇 (𝑥)𝑘+1 = 𝑇 (𝑥)𝑘 − 𝛼𝑠𝑖𝑔𝑛(𝑔𝑘 )
7: Projection: 𝑥𝑎𝑑𝑣 = 𝑐𝑙𝑖𝑝 (𝑇 (𝑥)𝑘+1, 𝑥 − 𝜖, 𝑥 + 𝜖)
8: end for
9: return 𝑥𝑎𝑑𝑣

3.2 Contrastive Representation Leaning for
Robustness

Contrastive Leaning applies the stochastic data augmentation 𝑡 that
randomly obtains from an augmentation family T (T like random
cropping, random color distortion). It selects two transformations
𝑡, 𝑡 ′ ∈ T and augments the input sample 𝑥𝑖 into 𝑡 (𝑥𝑖 ), 𝑡 ′(𝑥𝑖 ), where

these two samples retain the instance-level discrimination of the
same input. Finally, a feature encoder 𝑓𝜃 (·) is applied with a projector
𝑔(·)(a two-layer perceptron) to map the (augmented) input 𝑥𝑖 into a
128-dimensional latent vector 𝑧𝑖 : 𝑧𝑖 = 𝑔(𝑓𝜃 (𝑡 (𝑥𝑖 ))). For𝑁 examples
with 2𝑁 augmented points, the self-supervised contrastive loss could
be defined as:

𝐿𝐶𝑜𝑛𝑡 =

2𝑁∑
𝑖=1

𝐿𝑖𝐶𝑜𝑛𝑡 = − log
exp[𝑠𝑖𝑚(𝑧𝑖 , 𝑧′𝑖 )/𝜏]∑2𝑁

𝑘=1 1𝑘≠𝑖 exp[𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑘 )/𝜏]
(4)

Where the 1𝑘≠𝑖 is an indicator of note whether 𝑖 = 𝑘 or not (if
so, returns 1; else, return 0), and the 𝜏 is a temperature parameter
(𝜏 = 0.5). For the similarity measurement 𝑠𝑖𝑚(𝑖, 𝑗), the cosine sim-
ilarity (𝑠𝑖𝑚(𝑎, 𝑏) = 𝑎T𝑏

| |𝑎 | | | |𝑏 | | ) is the typically used score between
normalized instance pair.

Based on the contrastive learning and adversarial sample, we
describe how to improve the robustness of embedding space via
our UPAT approach. This adversarial learning framework is similar
to the supervised adversarial learning method [22] in Eq. 5. Since
our approach focuses on unlabeled data scenario, the cross-entropy
loss based class-level training is not suitable in our approach. The
min-max formulation of instance-level based adversarial training
could be described as:

argmin
𝜃

E(𝑥) ∈𝐷 [ max
| |𝛿 | |∞≤𝜖

𝐿𝐶𝑜𝑛𝑡 (𝑡 ′(𝑥) + 𝛿, 𝑡 (𝑥);𝜃 )] (5)

The adversarial samples are generated through instance-level attacks
through Eq. 3. Finally, we organize the contrastive objective function
to maximize the similarity between transformed examples and their
instance-wise perturbation in the embedding space, which suppress
the vulnerability and improve the adversarial robustness. Unlike the
existing approach in Eq. 4, we apply the instance-level adversarial
examples as additional elements in the positive set, and formulate
our contrastive adversarial training objective in the following ways:

𝐿𝑈𝑃𝐴𝑇 (𝑡 (𝑥𝑖 ), 𝑡 ′(𝑥𝑖 ), 𝑥𝑎𝑑𝑣𝑖 ) = 𝐿𝑐𝑜𝑛𝑡 (𝑡 (𝑥𝑖 ), 𝑥𝑎𝑑𝑣𝑖 ) + 𝜆𝐿𝑐𝑜𝑛𝑡 (𝑡 ′(𝑥𝑖 ), 𝑥𝑎𝑑𝑣𝑖 )

= − log
exp[𝑠𝑖𝑚(𝑧𝑖 , 𝑧𝑎𝑑𝑣𝑖

)/𝜏]∑
𝑘≠𝑖 exp[𝑠𝑖𝑚(𝑧𝑘 , 𝑧𝑎𝑑𝑣)/𝜏]

− 𝜆 log
exp[𝑠𝑖𝑚(𝑧′

𝑖
, 𝑧𝑎𝑑𝑣
𝑖

)/𝜏]∑
𝑘≠𝑖 exp[𝑠𝑖𝑚(𝑧𝑘 , 𝑧𝑎𝑑𝑣)/𝜏]

(6)

Where the 𝑥𝑎𝑑𝑣
𝑖

is the adversarial perturbation of an augmented
sample 𝑡 (𝑥) or 𝑡 ′(𝑥), the UPAT loss is regarded as regularization on
the contrastive between adversarial examples and transformed clean
samples, such instances act with the same instance-level identity.

3.3 Fine-Tuning (FT) for Robustness Evaluation
The UPAT adversarially trains the model without the requirement
of data annotation and it is a self-supervised pre-training process
that works on a representation space. In order to evaluate the learned
embedding for down-stream class-level classification, it is necessary
to leverage a linear layer 𝑓𝑙 (·) on top of the fixed layer 𝑔(𝑓𝜃 (·)), and
fine-tune it with various training strategies. Here we major consider
the adversarial training (AT) strategy on the fine-tuning step, which
trains a linear classifier with class-level adversarial samples for the
specific attack (like ℓ∞, ℓ2), we follow the Eq. 5 that only optimizes
the parameters of the linear model 𝑓𝑙 (·). Also, other robust training
methods like pre-pocessing[31] could also be applied here.
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4 EXPERIMENT
4.1 Experimental Setup:
We implement UPAT through Pytorch1, and all the experiments are
done on a single Nvidia RTX 2080 GPU. We choose the ResNet-18
[16] as the network backbone without any fully connected layers,
our experiments are executed on two common datasets: CIFAR10,
CIFAR1002, all images are normalized into [0, 1] and the output
dimension from projector 𝑔(·) is set to 128. In the adversarial con-
trastive pre-training, we use the same data transformation setting
as discussed in SimCLR[8], which includes color distortions and
random gaussian blur. For the parameters setting during this step,
we set the batch size as 256, and apply the standard stochastic gra-
dient descent (SGD) with momentum to 0.9, weight decay to 0.001,
𝜆 = 1/256 for 300 epochs and perturbation 𝜖 = 0.03 with step size
𝛼 = 2/256 in Eq. 3. Next for the evaluation in the fine-tuning step,
we choose the AT on the linear layer after the frozen feature extrac-
tor 𝑔(𝑓𝜃 ), we set 100 epochs with the learning rate of 0.5, and the
learning rate would drop by a factor of 10 at 50 epoch. The PGD
attack would be used to generate class-level adversarial examples
for the AT, which performs ℓ∞ attack with 𝛼 = 8/256 in 10 steps.

For each attack type, we compare UPAT with state-of-the-art de-
fense techniques based on supervised and self-supervised training:
the common adversarial training AT [22], Adversarial Logit Pairing
ALP [19], and TRADES[32]3. For the self-supervised approaches,
we compare our method with the SimCLR fine-tuning with adver-
sarial training SimCLR-AT, SS-OOD[17]4 and SAT [7]. We also
evaluate our model on diverse scenarios: linear classifier for fine-
tuning UPAT-Linear, adversarial training for fine-tuning UPAT-AT.
For each competitor, we report the accuracy and adversarial accuracy
as the percentage of adversarial points that are correctly classified.

4.2 White-box Attacks:
To evaluate defensive ability against the white box attacks, we com-
pare diverse scenarios of UPAT with other supervised/self-supervised
learning-based defense methods, under different attacking strategies
(like 𝜖 = 16/255, and more steps in the PGD with 𝜖 = 8/255). We
choose the adversarial(robust) accuracy as the evaluate metric, we
test the model under PGD attacks with 20, and 100 steps, then set the
step-size 𝛼 = 2/256 for 20, and 𝛼 = 0.3/256 for 100 as same as[22].
Table. 1 shows a comparison of the performance on other com-
petitors against the different white-box attacks. Results show that
although all the vanilla model is extremely vulnerable to adversarial
attacks, the performance of UPAT-AT is better than most existing
approaches against the ℓ∞ attack. Specifically, we observe that after
fine-tuning on down-stream tasks (e.g., AT), our approach could
even outperform a supervised adversarial learning-based approach,
like the AT and ALP, and also obtain comparable performance to the
best one TRADES. A similar phenomenon could also be observed
in other self-supervised learning approaches. This significant obser-
vation shows that the self-supervised pre-training could improve the
model’s robustness on various PGD step attacks, through enhancing
the instance discrimination in the embedding space. Finally, our

1https://pytorch.org/
2https://www.cs.toronto.edu/ kriz/cifar.html
3https://github.com/yaodongyu/TRADES
4https://github.com/hendrycks/ss-ood

approach could get better performance compared with other self-
supervised methods. For example, our work improves the empirical
state-of-the-art robust accuracy around 1.67 - 2.84% under PGD-20
attack with different 𝜖 value, on CIFAR-10 dataset. It shows that
the contrastive learning between the instance-level perturbation and
transformed data could suppress the distortion in the embedding
space to ensure a more robust representation.

4.3 Black-box Attacks:
In this section, we verify the robustness of our models under the
black-box (transfer-based) attacks. We use the same network and
parameter setting that is specified in the white-box attack, then apply
different attacking strategies on the copy network to generate black-
box adversarial examples. For both datasets, we use the same attack
parameters as in the Madry’s model [22]. Here, we set the parameter
𝜖 = 8/255 and 16/255 under the PGD (black-box) method, with
20 iterations and 0.003 step size to attack other defense models.
We select the adversarial training (AT) and TRADES source as the
source models, then compute the perturbation directions according
to the source models’ gradients on the input to generate adversarial
perturbations. The generated adversarial samples are used to test on
different defense models. The results are described in Table. 2. We
compare the state-of-the-art approaches against UPAT with different
attack settings. From the Table. 2, it is obvious that UPAT is superior
to the adversarial training approaches against TRADES and AT with
a reasonable margin on most of the cases and similar performance
in few cases.

4.4 Generalizing Robustness on Unseen Attacks:
Here, we evaluate the generalization of the model that trained over
different adversarial learning approaches against unseen types of at-
tacks. We introduce and compare with the recently proposed robust-
union[23]. The ℓ∞ is set as the seen attack, ℓ2 with 𝜖 = 0.5, 1, ℓ1
with 𝜖 = 12, 24 as the unseen attack. We show the robust accuracy
on the CIFAR-10 dataset, results are the averages over 5 runs with
standard deviations in parenthesis. We show the performance of the
generalizing robustness on different white-box attacks and compare
it with other supervised or self-supervised learning-based defense
approaches. The result from Table. 3 shows that UPAT outperforms
most other competitors regarding higher robustness on the unseen
types of attacks. More specifically, in case of ℓ2, when 𝜖 changes
from 0.5 to 1.0, the adversarial accuracy of ACRL-Linear and ACRL-
AT do not vary significantly, AT, Robust-Union and TRADES drop
with a large margin (e.g., TRADES changes from 58.4% to 47.1%).
Furthermore, on the single unseen ℓ2 attack with 𝜖 = 0.5, we achieve
at least 5.3% robustness improvement compared with the super-
vised approach (e.g., Robust-Union), and 3.1% higher than the most
effective self-supervised approach SAT. This proves that introduc-
ing the instance-wise attacks into contrastive learning in the latent
embedding space is an effective approach that ensures the general
robustness against other attacks.

4.5 Parameter Sensitivity
We select the various values of the parameter 𝜆 and test the sensitivity
on UPAT-Linear (in Fig.3(a)). It can be seen that the value of 𝜆
should be set at a relative low range, as higher 𝜆 would cause a slight
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Table 1: Experimental results with white box attacks on ResNet18 trained on the CIFAR-10 and CIFAR-100, all models are trained
under ℓ∞ attack, we show the average results over totally 5 runs.

Acc on CIFAR-10 Acc on CIFAR-100

Train type Approach Clean 𝜖 =

8/255
𝜖 =

16/255
PGD20 PGD100 Clean 𝜖 =

8/255
𝜖 =

16/255
PGD20 PGD100

Supervised

𝐿𝑐𝑒 93.02% 0.56% 0 0 0 71.42% 0 0 0 0
AT 84.25% 44.55% 15.06% 43.59% 43.02% 53.95% 20.25% 6.11% 20.04% 19.71%
ALP 85.12% 46.96% 17.12% 46.12% 45.47% 55.82% 22.45% 7.74% 22.94% 22.47%
TRADES 83.11% 53.11% 23.92% 52.40% 51.98% 58.53% 24.58% 10.51% 24.31% 23.90%

Self
Supervised

+ FT

SimCLR-AT 85.33% 22.74% 12.82% 22.37% 21.84% 51.77% 8.83% 4.26% 8.18% 6.99%
SS-OOD 83.37% 50.92% 21.14% 50.35% 50.12% 52.69% 25.30% 10.18% 24.93% 24.11%
SAT 84.51% 51.53% 26.73% 51.17% 51.05% 54.21% 27.05% 10.83% 26.81% 26.47%
UPAT-Linear 83.82% 45.74% 20.05% 42.56% 40.71% 56.44% 21.64% 6.63% 20.91% 20.21%
UPAT-AT 81.17% 53.20% 29.57% 52.83% 52.57% 53.04% 29.23% 12.18% 28.77% 27.42%

Table 2: Performance of UPAT against black box attacks on the
CIFAR-10, during the experiments includes both SGD and ad-
versarial training.

TargetSource
𝜖 = 8/255 𝜖 = 16/255

AT TRADES AT TRADES
AT - 77.3±0.3 - 64.2±0.2

ALP 63.6±0.2 78.4±0.3 45.1±0.3 67.0±0.2
TRADES 61.2±0.2 - 41.7±0.3 -

UPAT-Linear 68.1±0.2 77.9±0.1 43.1±0.2 65.4±0.2
UPAT-AT 69.4±0.2 79.5±0.2 44.3±0.2 67.7±0.1

Table 3: The results of the generalizing robustness, all models
are trained under the ℓ∞ with 𝜖 = 8/255 . We set the PGD ℓ2, ℓ1
attack with different 𝜖 as the unseen attack.

Methods
ℓ∞

𝜖 = 8/255
ℓ2

𝜖 = 0.5
ℓ2

𝜖 = 1.0
ℓ1

𝜖 = 12
ℓ1

𝜖 = 24
Seen Unseen Unseen Unseen Unseen

AT 44.6±0.6 59.1±0.4 46.3±0.5 55.9±0.3 44.2±0.3
Robust-Union 48.7±0.4 64.5±0.4 52.1±0.4 56.8±0.3 45.9±0.4

TRADES 53.3±0.5 58.4±0.3 47.1±0.3 55.3±0.2 46.4±0.3
SimCLR-AT 7.3±0.4 27.3±0.3 22.1±0.3 25.1±0.2 20.3±0.2

SAT 51.5±0.5 66.7±0.3 63.5±0.2 75.4±0.3 72.2±0.2
UPAT-Linear 45.3±0.4 65.8±0.3 62.2±0.3 75.8±0.3 73.5±0.3

UPAT-AT 53.2±0.6 69.8±0.4 66.4±0.3 77.5±0.2 75.3±0.2

Table 4: Ablation study on the instance-level attack.

𝑇 (·) Selection Clean
Accuracy (%)

PGD-20 with
𝜖 = 8/255

PGD-100 with
𝜖 = 8/255

𝜖 = 16/255 with
PGD-20

Original 𝑥 84.77 40.14 38.23 16.62
𝑡 (𝑥) 83.39 42.03 40.05 19.24
𝑡 ′(𝑥) 83.85 42.56 40.71 19.05

drop of accuracy against different perturbation attacks. We also
verify the learning curve of UPAT under increasing epoch number
in Fig.3(b), our method could acquires sufficiently stable robust
accuracy after around 300 epochs.

4.6 Ablation Study
4.6.1 Metric loss for generating perturbation. As described
in Sec. 3.1, various metric loss functions can be used to compute
the similarity between two transformed samples (𝑡 (𝑥), 𝑡 ′(𝑥)) in the
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Figure 3: (a). 𝜆 ablation experiment results with white box at-
tacks on UPAT-Linear model. (b)Evaluation of the UPAT-AT
performance on white-box attack over different PGD iteration
and 𝜖 value.

Table 5: Ablation study on the metric loss type for attacking.

Metric Loss Clean PGD attack with 𝜖 = 8/255

Accuracy (%)
PGD-20 on

UPAT-Linear
PGD-100 on
UPAT-Linear

Contrastive Loss 83.85±0.31 42.56±0.38 40.71±0.42
MSE Loss 85.39±0.28 42.15±0.32 40.04±0.36

embedding space. Here, we compare two different metric losses: the
mean square error (MSE), and contrastive loss. Table. 5 shows that
the contrastive loss is more effective on robustness accuracy com-
pared to MSE. Therefore, in the experiment, we use the contrastive
loss as the metric in attack generation.

4.6.2 𝑇 (·) selection for instance-level attack. To generate the
instance-level adversarial sample, we need to decide which identity
we will select for a self-generate adversary in Eq. 3. Here, the origi-
nal input 𝑥 , the transformed image 𝑡 (𝑥), and another augmentation
of original input 𝑡 ′(𝑥) share the same identity. We evaluate all these
three instances in the instance-wise attacks under the UPAT-linear
setting. In Table. 4, we observe that the original 𝑥 is still useful for
the self-generate adversary on the clean input classification. How-
ever, compared to transform version (𝑡 (𝑥), 𝑡 ′(𝑥)), 𝑥 shows relatively
low robust accuracy during an adversarial attack. Therefore, the
instance-level attack is be of help to ensure stable instance-identity
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performance in the embedding space, and it is not sensitive to trans-
form strategy.

5 CONCLUSION
To solve the challenge of improving adversarial robustness under
the label-free setting, this paper proposes the UPAT that focuses
on suppressing the vulnerability in the representation space, and
improves the model robustness. We first implement the instance-
level unsupervised perturbation, which confuses the model on the
instance discrimination of a single input. Then we combine the
perturbation with adversarial contrastive training, and maximize
the agreement between transformed input with its corresponding
adversarial output. We evaluate our method on multiple benchmarks
under both seen and unseen white-box attacks, finally obtain superior
robustness to the other state-of-the-art approaches. In the future work,
we would further apply such defense mechanism into the real-world
application, such as information retrieval system [1, 3] and so on.
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