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ABSTRACT
Deep learning models in large-scale machine learning systems are
often continuously trained with enormous data from production
environments. The sheer volume of streaming training data poses
a significant challenge to real-time training subsystems and ad-hoc
sampling is the standard practice. Our key insight is that these
deployed ML systems continuously perform forward passes on
data instances during inference, but ad-hoc sampling does not take
advantage of this substantial computational effort. Therefore, we
propose to record a constant amount of information per instance
from these forward passes. The extra information measurably im-
proves the selection of which data instances should participate in
forward and backward passes. A novel optimization framework
is proposed to analyze this problem and we provide an efficient
approximation algorithm under the framework of minibatch SGD
as a practical solution. We also demonstrate the effectiveness of
our framework and algorithm on several large-scale classification
and regression tasks, when compared with competitive baselines
widely used in industry.
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1 INTRODUCTION
Deep neural networks (DNNs) have achieved unprecedented suc-
cess in many machine learning tasks, for example, in computer vi-
sion [1, 2], speech recognition [3], natural language processing [4],
recommender systems [5], and game playing [6, 7]. As these DNNs
typically have a huge number of learnable parameters, they re-
quire millions of data for training. For example, in computer vision,
state-of-art DNN models (e.g., [1, 2]) use the ImageNet [8] that con-
tains more than 1.4M images. In natural language processing, BERT
[9] uses the BooksCorpus (800M words) and English Wikipedia
(2, 500M words) for the pre-training corpus. In recommendation
systems, RecVAE [10] uses the Netflix dataset that contains more
than 100M movie ratings performed by anonymous Netflix cus-
tomers [11]. YouTube product-DNN [5] uses the dataset that has a
vocabulary of 1M videos and 1M search tokens. Moreover, TDM
product-DNN [12, 13] uses datasets that consist of more than 8M
user-book reviews from Amazon and more than 100M records of
Taobao user behavior data. With the advent of such large scale
datasets, training large DNNs has become exceptionally challeng-
ing. For instance, training BERT takes 3 days on 16 TPUv3 [9] and
training PlaNet [14] even takes 2.5 months on 200 CPU cores using
the DistBelief framework [15]. Thus, there is a growing interest in
developing subsampling algorithms to downsize the data volume
and accelerate training large DNNs.

Many approaches have been proposed for data reduction from
a wide range of perspectives while preserving the performance
as much as possible. Most of these existing approaches fall into
one of the two broad categories: Randomized methods and Non-
randomized methods. Although both categories construct the sam-
ples in a non-uniform data-dependent fasion [16], there is a key
difference in the data they operate on. The randomizedmethods con-
struct the samples by directly operating on a randomized sketch of
the input covariate matrix [16–18]. In contrast, the non-randomized
methods operate on a randomized sketch of both the input covariate
matrix and the responses [19, 20]. These subsampling approaches
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have been applied to matrix-related problems in large scale ma-
chine learning tasks, e.g., linear regression [18, 19, 21–25], logistic
regression [20, 26, 27], and low-rank matrix approximation [28, 29].
We summarize the literature in Table 1.

Despite of these impressive algorithmic achievements in tradi-
tion machine learning tasks, none of these work on leveraging or
leverage-based sampling demonstrates the capabilities to handle
large-scale deep learning tasks. The main reason is that most of
these methods are inflexible as they are derived only for specific
linear, logistic regression models or low-rank approximations. In
this paper, we bridge this gap by proposing a novel subsampling
methods on approximating the full data empirical risk under the
framework the minibatch stochastic gradient descent (Mini-SGD).
Our method is motivated by minimizing the discrepancy between
the true empirical risk on the entire dataset and the empirical risk
on the sampled data.

Our contributions: In this paper, we have two major contribu-
tions for methodological developments in subsampling for solving
large-scale deep learning. First, we propose the general optimiza-
tion framework for data subsampling in any machine learning
tasks. This is achieved by minimizing the discrepancy between the
true empirical risk when training the model on the entire dataset
and the empirical risk when training the model on the sampled
data. Second, we develop approximation algorithms through two-
step relaxations of the previous optimization problem under the
framework of Mini-SGD. We conduct experiments on the synthetic
linear regression experiments that provide insight, as well as on
the MNIST and ImageNet datasets and show that our method can
substantially improve the performance across different tasks given
a fixed budget.

2 RELATEDWORK
Importance sampling These methods are most closely related to
our proposed techniques. The key idea behind these methods is
to replace the uniform distribution used for sampling with a non-
uniform distribution instead. Importance sampling has been used
to accelerate the training of DNNs in various applications, such
as image classification [37, 40], face recognition [41], and object
detection [42, 43]. Specifically, we consider the Stochastic Gradient
Descent (SGD) with importance sampling [32, 36, 39] in this paper.

We summarize the literature in Table 2. Among these paper, [38,
39] are most related to our work. Similar to ours, both approaches
use the loss to construct the sampling distribution. [38] prioritizes
samples with high loss at each iteration while [39] chooses the
sample with lowest loss. However, approaches prioritizing samples
with high loss are not robust to outliers while approaches using the
samples with low loss often leads to low convergence rate andworse
testing performance in practical applications. Although shown to be
robust against outliers, the test accuracy of [39] are often inferior to
other approaches in practical applications. In contrast, we develop
algorithms choosing the subset of samples, the average loss of
which best approximates that of the whole batch. We show that
our approach achieves better balance in terms of robustness and
convergence speed than the existing approaches.

Coresets selection Also related to our work is the problem of
coresets selection since our algorithm consists of solving the core-
sets selection problem. This problem aims to select a subset of the
full dataset such that the model trained on the selected subset will
perform as closely as possible to the model trained on the entire
dataset. Originating from computational geometry [46], the idea of
coresets selection has been successfully employed to design vari-
ous machine learning algorithms for, e.g., k-Means and k-Medians
clustering [47–49], SVM [50], SVR [51], and logistic regression [27].
Most recently, algorithms based on coresets selection have also
been proposed for CNN [52] and GAN [53].

Among those approaches that use coresets selection, most sim-
ilar to ours are the batch active learning (AL) in [52, 54] and the
bayesian coresets in [27, 55, 56] . [52, 54] formulate AL as a coresets
selection problem. They choose a subset of unlabeled points to label
such that a model learned over the selected subset is expected to
yield competitive result over the whole dataset. Our algorithms
consider a different setting where all the data is labeled. This is
often the case in many real world applications, e.g., recommerder
systems. [27, 55, 56] consider constructing Bayesian coresets for
the Bayesian statistical models, attempting to select a small sub-
set of the data to approximate the log-likelihood of the full data.
Differently, we consider the general loss function under any em-
pirical risk minimization framework. We consider our work to be
complementary to the Bayesian coresets literature.

3 SUBSAMPLING FOR LARGE-SCALE DEEP
LEARNING

3.1 Background
Let x𝑖 , 𝑦𝑖 be the 𝑖-th input-output pair from the training set, 𝑦 =

𝑔𝜃 (x) be a Deep Learning model parameterized by the vector 𝜃,
and L(x, 𝑦) be the loss function to be minimized during training.
The goal of training is to find

𝜃∗ = arg min
𝜃

1
𝑁

𝑁∑
𝑖=1

L (𝑔𝜃 (x𝑖 ), 𝑦𝑖 ) , (1)

where 𝑁 corresponds to the number of examples in the training
set.

Stochastic gradient descent (SGD) is a common procedure ap-
plied to solve (1). Specifically, SGD proceeds in a number of iter-
ations, at each step selecting a single example 𝑖 and updating the
weights by subtracting the gradient of the loss multiplied by a the
learning rate 𝜂.

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡∇𝜃L
(
𝑔𝜃𝑡 (x𝑖 ) , 𝑦𝑖

)
. (2)

In minibatch stochastic gradient descent (Mini-SGD), at each step,
one selects a subset of examples

{(
x𝑡
𝑖
, 𝑦𝑡

𝑖

)}𝑛𝑡
𝑖=1

, often by sampling

from {(x𝑖 , 𝑦𝑖 )}𝑁𝑖=1 at random without replacement, traversing the
full training set once per epoch, applying the update

𝜃𝑡+1 = 𝜃𝑡 − 𝜂𝑡
𝑛𝑡∑
𝑖=1

∇𝜃L
(
𝑔𝜃𝑡

(
x𝑡𝑖
)
, 𝑦𝑡𝑖

)
. (3)
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Table 1: Classification of the research in data subsampling

linear regression logistic regression low-rank approximation DNN
Randomized [16, 18, 22–24, 29] [16, 28, 29]

Non-Randomized [19, 21], ours [20, 26, 27], ours ours ours

Table 2: Gradien-based vs Loss-based importance sampling

Convex Program Deep Learning

Gradient Norm [30–33] [34–37]
Loss [38, 39], ours [38–45], ours

In the current Mini-SGD framework, all of
{(
x𝑡
𝑖
, 𝑦𝑡

𝑖

)}𝑛𝑡
𝑖=1

is used
in the gradient procedure: the DNN model parameter 𝜃 is being
updated using the entire batch data

{(
x𝑡
𝑖
, 𝑦𝑡

𝑖

)}𝑛𝑡
𝑖=1

iteration.
This batch contains 𝑛𝑡 data points, but potentially, many of them

will not contribute much to improving the model because the deep
learning model begins to classify these examples accurately, espe-
cially redundant examples that are wellrepresented in the dataset.
The main question is:

Can we only keep a (small) subset of
{(
x𝑡
𝑖
, 𝑦𝑡

𝑖

)}𝑛𝑡
𝑖=1

for training and
throw away the rest? And how should we implement this scheme so
that previous performance stays close to intact?

3.2 A general framework for data subsampling
Before discussing about selecting a subset of

{(
x𝑡
𝑖
, 𝑦𝑡

𝑖

)}𝑛𝑡
𝑖=1

for train-
ing in Mini-SGD, we propose a general framework for data sub-
sampling in any machine learning tasks. Formally, denote C the
training dataset. Denote T the testing dataset. Then, one way to
formulate the data subsampling problem is as follows

min
𝑧𝑖 ,𝜃C ,𝜃 ∗

C

∥ 1
|T |

∑
(x𝑖 ,𝑦𝑖 ) ∈T

L
(
𝑔𝜃 ∗

C
(x𝑖 ), 𝑦𝑖

)
− 1

|T |
∑

(x𝑖 ,𝑦𝑖 ) ∈T
L

(
𝑔
𝜃C

(x𝑖 ), 𝑦𝑖
)
∥2

s.t. 𝜃∗C ∈ arg min
𝜃

∑
(x𝑖 ,𝑦𝑖 ) ∈C

L (𝑔𝜃 (x𝑖 ) , 𝑦𝑖 ) ,

𝜃C ∈ arg min
𝜃

∑
(x𝑖 ,𝑦𝑖 ) ∈C

𝑧𝑖 · L (𝑔𝜃 (x𝑖 ) , 𝑦𝑖 ) ,

|C |∑
𝑖=1

𝑧𝑖 ≤ 𝐾,

𝑧𝑖 ∈ {0, 1}, 𝑖 = 1, . . . , |C|,
(4)

where 𝐾 is the sample size of the subset we hope to construct. The
objective function seeks to measure the discrepancy between the
true empirical risk when training the model on the entire dataset
and the empirical risk when training the model on the sampled
data. The first constraint restricts that 𝜃∗C is the optimal estimator
when training on the entire dataset. The second constraint restricts
that 𝜃C is the optimal estimator when training on the sampled
data. The third constraint restricts that at most 𝐾 data points would
be selected during the subsampling process. The last constraint

restricts that each data point would be either selected or not selected,
where 𝑧𝑖 = 1 means selected, and not, otherwise.

Solving the formulation (4) yields the optimal sampling strategy
regarding to achieve the best empirical risk obtainable. However,
note that (4) involves many indicator variables and has non-convex
objective function and constraints, making it a very complex combi-
natorial optimization problem and thus NP-hard to solve. Although
state-of-art mixed integer non-convex algorithms might solve (4) to
optimal, it is extremely time-consuming to achieve this and might
take much more efforts than solving (1) itself. Hence, the general
framework is not directly applicable in subsampling the data for
large-scale deep learning.

3.3 One backward from ten forward for deep
learning

Due to challenges of solving (4) directly, we seek to propose ap-
proximation algorithms through two-step relaxations under the
framework of Mini-SGD.

First, given the data
{(
x𝑡
𝑖
, 𝑦𝑡

𝑖

)}𝑛𝑡
𝑖=1

at batch 𝑡 , we approximate the
true empirical risk on the whole dataset in (4) by the empirical risk
on the batch data:

1
|T |

∑
(x𝑖 ,𝑦𝑖 ) ∈T

L
(
𝑔𝜃 ∗

C
(x𝑖 ), 𝑦𝑖

)
≈ 1
𝑛𝑡

𝑛𝑡∑
𝑖=1

L
(
𝑔𝜃𝑡−1 (x

𝑡
𝑖 ), 𝑦

𝑡
𝑖

)
.

Second, we approximate the empirical risk on the selected data
in (4) by the empirical risk on the selected data in batch 𝑡 :

1
|T |

∑
(x𝑖 ,𝑦𝑖 ) ∈T

L
(
𝑔
𝜃C

(x𝑖 ), 𝑦𝑖
)
≈ 1
𝑏

𝑛𝑡∑
𝑖=1

𝑧𝑡𝑖 · L
(
𝑔𝜃𝑡−1 (x

𝑡
𝑖 ), 𝑦

𝑡
𝑖

)
.

Here, 𝑏 is the number of data points we are allowed to sample
within a batch.

Let 𝑙𝑡 = 1
𝑛𝑡

𝑛𝑡∑
𝑖=1

𝑙𝜃𝑡−1 (x𝑖 , 𝑦𝑖 ) be the average loss for the 𝑡-batch

data using 𝜃𝑡−1. Then, we convert the problem of subsampling data
points from the entire dataset into the problem of subsampling
data points from each batch. Now, one key step of subsampling the
training data in the current batch can be formulated as

min
𝑧𝑡
𝑖

∥ 1
𝑛𝑡

𝑛𝑡∑
𝑖=1

L
(
𝑔𝜃𝑡−1 (x𝑡𝑖 ), 𝑦

𝑡
𝑖

)
− 1

𝑏

𝑛𝑡∑
𝑖=1

𝑧𝑡
𝑖
· L

(
𝑔𝜃𝑡−1 (x𝑡𝑖 ), 𝑦

𝑡
𝑖

)
∥2

s.t.
𝑛𝑡∑
𝑖=1

𝑧𝑡
𝑖
≤ 𝑏,

𝑧𝑡
𝑖
∈ {0, 1}, 𝑖 = 1, . . . , 𝑛𝑡

(5)

where 𝑏 is the size of the data we hope to sample from the batch
of training data

{(
𝑥𝑡
𝑖
, 𝑦𝑡

𝑖

)}𝑛𝑡
𝑖=1

. (5) is a sparse subset approximation
problem.
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Our algorithm for solving large-scale deep learning problem
with subsampling of the data points iterates as in Algorithm 1.

Algorithm 1 One Backward from Ten Forward for deep learning
(OBFTF)

1: Input: batch data {(x𝑖 , 𝑦𝑖 )}𝑛𝑡𝑖=1 for 𝑡 = 1, 2, . . ., and a budget 𝑏.
2: Initialization: 𝜃0 could be an arbitrary hypothesis of the pa-

rameter.
3: for 𝑡 = 1, 2, . . . do
4: Forward propagate and compute 𝑔𝜃4𝑝𝑡𝑡−14𝑝𝑡

(x𝑡
𝑖
) for 𝑖 =

1, . . . , 𝑛𝑡
5: Compute loss L

(
𝑔𝜃𝑡−1 (x𝑡𝑖 ), 𝑦

𝑡
𝑖

)
for 𝑖 = 1, . . . , 𝑛𝑡

6: Solve (5), get 𝑧𝑡
𝑖
for 𝑖 = 1, . . . , 𝑛𝑡

7: Keep (x𝑖 , 𝑦𝑖 ) if 𝑧𝑡𝑖 = 1
8: Back propagate and train the model using the selected data,

get 𝜃𝑡
9: end for

Although (5) is still a combinatorial optimization problem, it is
much easier to solve than (4) and there exists efficient approxima-
tion algorithms, such as Frank-Wolfe. For the current paper, the
combinatorial problem is solved to optimal using state-of-art solver
to fully illustrate the performance of Algorithm 1. In future, we
shall develop fast and accurate algorithms to solve the sparse subset
approximation problem.

4 EXPERIMENTS
We test the objectives on the following datasets: (1) Synthetic
dataset for linear regression, (2) MNIST, and (3) ImageNet. De-
tailed descriptions are in the supplementary material. Code will be
open-sourced upon acceptance of the manuscript.

To evaluate the performance of the proposed framework, we
compare with the following methods:

• Uniform Sampling (Uniform). Let 𝜋𝑖 = 1/𝑛, i.e., draw the
subsample uniformly at random at random.

• Selective-Backprop. In each iteration, select the sample
with the probability that is proportitial to the current loss
[38].

• Min-𝑘 Loss SGD (minK) [39]. Choosing the subsample
with lowest loss.

4.1 Synthetic data
Simulated data: 𝑦 = 2𝑥 + 1 + 𝑈 (−5, 5), 1000 training data, 10000
testing data.

Simulated data with outlier : 𝑦 = 2𝑥 + 1 +𝑈 (−5, 5) (+𝑈 (−20, 20)
for 20 data points), 1000 training data, 10000 testing data.

Results For data without outliers, we train the models with
relatively small sampling rate (smaller than 0.15). minK is the most
compatitive method in this case. It outperforms other methods with
the sampling rate is smaller than 0.05. While OBFTF performs the
best when the sampling rate is between 0.1 and 0.15. For data with
outliers, we train the models with a variety of sampling rates be-
tween 0.01 and 0.5. When the sampling rate is smaller than 0.15,
minK and selective-backprop are comparable to OBFTF. Their per-
formance, however, is unstable that a slight increase or decrease in

(a) Data without outliers

(b) Data with outliers

Figure 1: Performance of the sampling algorithms for linear
regression.

the sampling rate causes a significant drop off in the normalized
testing loss. OBFTF performs stable within the sampling rate range,
and outperforms other methods when the sampling rate is between
0.15 and 0.5.

4.2 MNIST
We perform a classification task on the MNIST dataset [57], which
contains 70, 000 gray scale images of numerical digits from 0 to
9, divided as 60, 000 training images and 10, 000 test images. We
do not apply any preprocessing to this dataset and only compare
models without data augmentation.

Training settings All the models are trained for 500 epoches
with the following settings: initial learning rate is 0.1, batch size is
128, two hidden layers and both of them have 256 neurons.

Results We compare OBFTF with the other methods under a
variety of sampling ratios. As shown in Figure 2, OBFTF achieves
higher accuracy than other methods when the sampling rate is small
(0.1 to 0.25), indicating its benefits in speeding up the training phase
of classification problems by using a small sampling rate. When the
sampling rate increases (to 0.5), the difference of the performance
of all these methods are insignificant. We note that the accuracy of
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Table 3: Performance of the sampling algorithms on ImageNet 2012 Val set. ResNet50 and MobileNetV2 are used as baseline
models.

Model Method 0.10 0.15 0.20 0.25 0.30 0.45

ResNet50
Uniform sampling 0.7074 0.7086 0.7316 0.7391 0.7313 0.7430
Selective-Backprop. 0.2551 0.2986 0.3699 0.3939 0.4431 0.4770

Ours 0.7096 0.7113 0.7355 0.7439 0.7303 0.7452

MobileNetV2
Uniform sampling 0.6922 0.7065 0.7143 0.7196 0.7242 0.7279
Selective-Backprop. 0.6164 0.6572 0.6654 0.6700 0.6795 0.6916

Ours 0.6956 0.7102 0.7167 0.7198 0.7242 0.7283

Figure 2: Performance of the sampling algorithms for
MNIST.

OBFTF with 0.25 sample rate is higher than the accuracies of all of
the methods with 0.5 sample rate! It demonstrates the effectiness
of our method in classification tasks, and the fact that a small
sampling rate may achieve the same or even better accuracy than a
big sampling rate.

4.3 ImageNet
To further evaluate our method on large-scale datasets, we perform
a much more challenging image classification task on 1000-class
ImageNet dataset [8], which contains about 1.2 million training
images, 50,000 validation images and 100,000 test images. To verify
the effectiveness of our method on different types of neural net-
works, we choose the popular ResNet50 [2] and MobileNetV2 [58]
as baseline models, both of which achieves state-of-the-art results
on ImageNet. Compared to ResNet50 which has a higher accuracy,
MobileNetV2 is advantageous with higher computational efficiency,
thus more friendly to mobile devices, e.g. cell phones.

Training settings Following the training schedule in MNas-
Net [59], we train the baseline models using the synchronous train-
ing setup on 32 Tesla-V100-SXM2-16GB GPUs. The initial learning
rate is set to be 0.016, and the overall batch size is 4096 (128 images
per GPU). The learning rate linearly increases to 0.256 in the first
5 epochs and then is decayed by 0.97 every 2.4 epochs. We use a
dropout of 0.2, a weight decay of 1e−5 and Inception image pre-
processing [60] of size 224 × 224. We also use exponential moving
average on model weights with a momentum of 0.9999. All batch

normalization layers use a momentum of 0.99. Using above settings,
we train ResNet50/MobileNetV2 for 150/350 epoches respectively.

Results On both ResNet50 and MobileNetV2, we compare our
method with the uniform sampling and Selective-Backprop under a
variety of sampling ratios, i.e. [0.1, 0.15, 0.20, 0.25, 0.30, 0.45]. We do
not report the results of minK as it does not yield comparable results
at all. As can be seen from Table 3, on both baseline models, our
method achieves higher accuracy than the uniform sampling and
Selective-Backprop in this challenging task. Particually when the
sampling rate is small e.g. ranging from 0.10 to 0.25, our method has
more obvious advantage over the counterpart. This result suggests
our method can remarkably benefit training on large-scale datasets
by using a small sampling rate to speedup the training phase. When
the sampling rate increases, the margin shrinks which may be due
to the fact that as sampled out data becomes more representative of
the full-sized dataset, the weights of models trained using compared
sampling methods receive more accurate gradient updates in each
iteration. Above results demonstrates the effectiness of our method
in large-scale machine learning tasks.

5 CONCLUSION
We consider accelerating training deep learning models in large-
scale ML systems. We leverage the key insight that these deployed
ML systems continuously perform forward passes on data instances
during inference, but ad-hoc sampling does not take advantage of
this substantial computational effort. Therefore, we propose to
record a constant amount of information per instance from these
forward passes. The extra information measurably improves the
selection of which data instances should participate in forward and
backward passes. A novel optimization framework is proposed to
analyze this problem and we provide an efficient approximation
algorithm under the framework of minibatch SGD as a practical
solution. We demonstrate the effectiveness of our framework and
algorithm on several large-scale classification and regression tasks.
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[47] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via
core-sets. In Proceedings of the thiry-fourth annual ACM symposium on Theory of
computing, pages 250–257, 2002.

[48] Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median
clustering. In Proceedings of the thirty-sixth annual ACM symposium on Theory of
computing, pages 291–300. ACM, 2004.

[49] Vladimir Braverman, Lingxiao Huang, Shaofeng H-C Jiang, Robert Krauthgamer,
and Xuan Wu. Coresets for clustering in graphs of bounded treewidths. In ICML,
2020.

[50] Ivor W Tsang, James T Kwok, and Pak-Ming Cheung. Core vector machines:
Fast svm training on very large data sets. Journal of Machine Learning Research,
6(Apr):363–392, 2005.

[51] Ivor W Tsang, James T Kwok, and Kimo T Lai. Core vector regression for very
large regression problems. In ICML, 2005.

[52] Ozan Sener and Silvio Savarese. Active learning for convolutional neural net-
works: A core-set approach. In ICLR, 2018.

[53] Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio, Hugo Larochelle,
and Augustus Odena. Small-gan: Speeding up gan training using core-sets. In
ICML, 2020.

[54] Robert Pinsler, Jonathan Gordon, Eric Nalisnick, and José Miguel Hernández-
Lobato. Bayesian batch active learning as sparse subset approximation. In
NeurIPS, 2019.

[55] Trevor Campbell and Tamara Broderick. Bayesian coreset construction via greedy
iterative geodesic ascent. In ICML, 2018.

[56] Trevor Campbell and Tamara Broderick. Automated scalable bayesian inference
via hilbert coresets. The Journal of Machine Learning Research, 20(1):551–588,
2019.

[57] Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of
handwritten digits, 1998. URL http://yann. lecun. com/exdb/mnist, 10:34, 1998.

[58] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR,
2018.



One Backward from Ten Forward, Subsampling for Large-Scale Deep Learning Woodstock ’18, June 03–05, 2018, Woodstock, NY

[59] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew
Howard, and Quoc V Le. Mnasnet: Platform-aware neural architecture search
for mobile. In CVPR, 2019.

[60] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi.
Inception-v4, inception-resnet and the impact of residual connections on learning.
In AAAI, 2017.


	Abstract
	1 Introduction
	2 Related work
	3 Subsampling for Large-scale deep learning
	3.1 Background
	3.2 A general framework for data subsampling
	3.3 One backward from ten forward for deep learning

	4 Experiments
	4.1 Synthetic data
	4.2 MNIST
	4.3 ImageNet

	5 Conclusion
	References

