
Graph Convolutional Network with Node Addition and Edge
Reweighting for Semi-Supervised Learning

Wen-Yu Lee
GREE, Inc.

Tokyo, Japan

ABSTRACT
Graph convolutional networks (GCNs) provide a promising way to
explore datasets that have graph structures in nature. Recent works
on GCNs focused on reweighting edges and adding missing edges
for corrupted or incomplete graphs. Further, this paper presents
a simple while effective extension of GCNs by node addition and
edge reweighting. Node addition adds new nodes and edges as
communication centers to the original graphs. Thereby nodes may
share information together for efficient inference and noise reduc-
tion. Edge reweighting re-distributes the weights of edges and even
removes noisy edges considering local structures of graphs for per-
formance enhancement. Based on seven benchmark datasets, the
experimental results demonstrate that the proposed approach can
achieve better performance than three state-of-the-art approaches.

CCS CONCEPTS
•Computingmethodologies→ Semi-supervised learning set-
tings;Neural networks; •Mathematics of computing→Graph
algorithms.

KEYWORDS
graph convolutional network, semi-supervised learning, node addi-
tion, edge reweighting

1 INTRODUCTION
For a long time, convolutional neural networks (CNNs) have been
widely used to various multimedia applications, such as image
classification [1, 6], semantic segmentation [7, 11], and clothing rec-
ommendation [21]. Classical CNNs focus on the problems where a
data instance can be represented in a regular grid structure [2], e.g.,
an image. With a regular structure, filters can directly be applied
to extract effective features for model generation. However, many
problems involve irregular structures in nature, and these datasets
are commonly modeled as irregular graph structures, such as so-
cial relation analysis and protein-protein interactions. As a result,
generalized CNNs have been rapidly developed for irregular graph
structures from single-relational and even multi-relational data
instances, see, e.g., [2–4, 10].

Earlier, Bruna et al. extended the classical convolution oper-
ator based on spectral representation of graphs for generalized
CNNs [2]. Extending the work in [2], Defferrard et al. proposed
a computationally efficient method to perform convolution oper-
ation on graphs [3]. Subsequently, Kipf and Welling considered
the classical graph-based semi-supervised learning (SSL) problems,
where the objective is to predict labels for unlabeled nodes based on
labeled nodes, see e.g., [22, 23]. They then developed graph convolu-
tional networks (GCNs) for graph-based SSL problems [10]. Further,

Veličković et al. added self-attention layers to reweight edges of
graphs [18]. Jiang et al. then showed performance improvement
by seamlessly combining Kipf and Welling’s GCNs and their edge
reweighting method [8]. Franceschi et al. proposed a framework,
called LDS, that can simultaneously learn graph structures and
GCN parameters [5]. Recently, Yu et al. indicated that LDS may
not scale well to large graphs, and then presented graph-revised
convolutional networks (GRCNs), which are capable of adding new
edges and reweighting edges [20].

While most works resorted to edge-based refinement, this paper
further explores the domain of node addition. As data instances may
have similar features, node addition allows nodes with similar fea-
tures to share information together and reduce noisy information.
Moreover, this paper considers edge reweighting so as to determine
proper weights for edges adjacent to the added nodes, and remove
noisy edges. Overall, this paper presents a simple while effective
extension of GCNs in [10] by node addition and edge reweighting,
for graph-based SSL problems. Compared to [8, 18], node addition
considers the addition of new nodes and new edges to original
graphs, while the two works focused on reweighting the edges
existing in the original graphs. Compared to [5], the proposed ap-
proach is capable of handling more large-scale datasets. In contrast
to [20], the proposed approach further considers the addition of
new nodes and removal of noisy edges. Overall, this paper has three
main contributions as follows:

• To the best of our knowledge, this paper presents the first
work on adding new nodes for graph-based CNNs on SSL
problems.

• This paper presents a new method to reweight edges and
even to remove noisy edges of a given graph. Besides, the
method can benefit node addition on determining proper
weights for edges adjacent to the new nodes.

• We conduct experiments on seven datasets to validate the
effectiveness of the proposed approach on graph-based SSL
problems.

The remainder of this paper is organized as follows. Section 2
reviews the GCN method for graph-based SSL problems. Section 3
details the proposed approach. Section 4 evaluates the performance
of the proposed approach. Section 5 concludes this paper. For read-
ability, Appendix A summarizes the symbols and notations used
throughout this paper.

2 BACKGROUND
This section briefly reviews the SSL of using the GCN method
in [10]. Let 𝐺 (𝑉 , 𝐸) be a graph with nodes 𝑉 and edges 𝐸 ⊆ 𝑉 ×𝑉 .
An adjacency matrix 𝐴 ∈ R |𝑉 |× |𝑉 | provides a representation of
whether pairs of nodes in𝐺 contain edges connecting them, where
|𝑉 | is the number of nodes of graph 𝐺 . Typically, 𝐴𝑖 𝑗 = 1 if the

Wen-Yu Lee

nodes 𝑖 and 𝑗 are adjacent, and 𝐴𝑖 𝑗 = 0 otherwise. We are given a
feature matrix 𝑋 = (𝑥1, 𝑥2, ..., 𝑥𝑛) ∈ R𝑛×𝑝 for 𝑛 instances, where
𝑥𝑖 is the feature vector of instance 𝑖 , and 𝑝 is the dimension of a
feature vector. For SSL, each node of graph 𝐺 is associated with
the feature vector of an instance, and thus, |𝑉 | = 𝑛. The adjacency
matrix, 𝐴, is associated with the relationship between pairs of the
instances, e.g., similarity. We let 𝑌 ∈ R𝑛×𝑐 be a label matrix and 𝐿
be the set of nodes with labels, where 𝑌𝑖 𝑗 = 1 if 𝑖 ∈ 𝐿 and the label
of 𝑥𝑖 is 𝑗 , and 𝑌𝑖 𝑗 = 0 otherwise.

Given 𝑋 , 𝐴, 𝑌 , and 𝐿, as the inputs for SSL, an 𝑟 -layer GCN
method performs layer-wise propagation as follows.

𝐻 (𝑢+1) = 𝜎 (�̃�− 1
2 �̃��̃�− 1

2𝐻 (𝑢)𝑊 (𝑢)), (1)

where 𝐻 (0) = 𝑋 , 𝑢 = 0, 1, ..., 𝑟 − 1 is a layer index, �̃� = 𝐴 + 𝐼 means
to add a self-loop of every node, 𝐼 ∈ R𝑛×𝑛 is the identify matrix,
�̃� ∈ R𝑛×𝑛 is a diagonal matrix with �̃�𝑖𝑖 =

∑𝑛
𝑗=1 �̃�𝑖 𝑗 ,𝑊 (𝑢) is the

weight matrix that is going to be learned for the 𝑢-th layer, and
𝜎 (.) is an activation function, e.g., ReLU(.). It is worth mentioning
that �̃�− 1

2 �̃��̃�− 1
2 is a symmetric normalization for �̃�. If we let 𝐴 =

�̃�− 1
2 �̃��̃�− 1

2 , then 𝐴𝑖 𝑗 can be viewed as the weight of edge that
connects the nodes associating to 𝑥𝑖 and 𝑥 𝑗 of graph 𝐺 . Note that
the output of the propagation is defined as,

𝑍 = softmax(𝐻 (𝑟)𝑊 (𝑟)), (2)

where 𝑍 ∈ R𝑛×𝑐 . Row 𝑍𝑖 refers to the prediction of the node asso-
ciating to 𝑥𝑖 for the 𝑐 classes. Finally, the GCN method defines the
loss function as,

𝜁pred = −
∑
𝑖∈𝐿

𝑐∑
𝑗=1

(
𝑌𝑖 𝑗 ln𝑍𝑖 𝑗

)
, (3)

to measure how good or bad the model does.

3 PROPOSED APPROACH
Figure 1 outlines the proposed approach. We first group the given
nodes into several clusters, followed by adding a new node for each
cluster. In each time we add a new node into a cluster, we will also
connect the new node to the nodes in the same cluster by adding
new edges. More details about node addition will be presented
in Section 3.1. After adding the new nodes, we will obtain a new
graph. To combine edge reweighting with the GCN method, we add
a parameter that will be learned for each node of the new graph,
and then modify the GCN method partially. More details about
edge reweighting will be presented in Section 3.2.

Note that we will follow the notations defined in Section 2
throughout this paper.

3.1 Node Addition
In real-world applications, inputs for SSL might be incomplete
or contain noisy data. The goal of node addition is to reduce the
influence of the imperfect inputs. More specifically, the motivation
of node addition is twofold:

• It is expected that nodes with similar features can share
information together and also reduce noise by averaging.

• Adding edges for isolated nodes or even ordinary nodes is
capable of increasing the performance of SSL.

Clustering

Node Addition

Input: X, A, Y, L

Prediction Results (Z)

GCN

Weight Parameters

Initialization (W)

Optimization

Edge-Reweighting

Parameters Initialization

Figure 1: Overall flow of the proposed approach. Nodes with
similar features are grouped into clusters. A new node will
be added into a cluster as a communication center. Edge
reweighting is then applied for GCN optimization.

Considering the two, we intend to provide a communication center
that connects nodes with similar features, and helps information
sharing.

For node addition, we group nodes of graph 𝐺 into clusters,
based on the features associated with the nodes, so that nodes
with similar features can be assigned to the same cluster. For each
cluster, we then add a node in it, where the feature of the new
node is set to be the average of the features of the original nodes
in the cluster. That is, the new node is placed on the center of the
cluster. In each time we add a new node for a cluster, we also add
an edge between the new node and each of the original nodes in
the cluster. Figure 2 illustrates the idea. Consider seven nodes that
are associated with seven instances, say {𝑥1, 𝑥2, ..., 𝑥7}, respectively.
As shown in Figure 2(a), suppose that {𝑥1, 𝑥2, 𝑥3, 𝑥4} are grouped
into one cluster, and {𝑥5, 𝑥6, 𝑥7} are grouped into the other cluster.
As we can see in Figure 2(b), a new node is then added at the center
of each cluster. Finally, new edges are added so as to each new node
with original nodes, as shown in Figure 2(c).

So far, we have built a communication center by adding a new
node and some edges, for each cluster of nodes with similar features.
Note that the number of nodes added and the number of edges
added in graph 𝐺 equal to the number of clusters and the total
number of nodes in graph 𝐺 , respectively. Because node addition
changes graph 𝐺 , we will use the superscript, ′, for the notations
associated with the new graph. For example,𝐺 ′(𝑉 ′, 𝐸 ′) is the new
graph,𝑋 ′ ∈ R𝑛′×𝑝 is the new feature matrix, and𝐴′ ∈ R𝑛′×𝑛′ is the
new adjacency matrix, where 𝑛′ is the number of nodes in graph
𝐺 ′, and obviously (𝑛′ − 𝑛) is the number of nodes added into 𝐺 .
Note that entries of 𝐴′ are either zeros or one. Intuitively, no two
features are exactly the same for most cases, and thus it is expected
that weights of edges incident to the communication centers could

Graph Convolutional Network with Node Addition and Edge Reweighting for Semi-Supervised Learning

(b)(a) (c)

x1

x3

x4

x5

x6

x7

x2

x1

x3

x4

x5

x6

x7

x2

x1

x3

x4

x5

x6

x7

x2

clusters

Figure 2: Illustration of node addition. (a) Suppose that nodes associated with {𝑥1, 𝑥2, 𝑥3, 𝑥4} are grouped together, and nodes
associated with {𝑥5, 𝑥6, 𝑥7} are grouped together. (b) For each cluster, a new node is added. (c) For each cluster, new edges are
added. Each new node will be acted as a communication center of the nodes within the same cluster.

properly be assigned. The assignment of proper weights will be
covered in the scope of our edge reweighting method. Later in
Section 3.2, we will generate a weighted adjacency matrix from 𝐴′,
and then do edge reweighting.

For practical implementation, we use 𝑘-means clustering, and
we apply a simple heuristic as follows. We randomly pick𝑚 (𝑚 = 5
in this paper) distinct numbers from 0 to 𝑛/10 as the candidates
of the 𝑘 value, where we set 𝑛/10 as a bound because we do not
intend to generate small-size clusters. For each of the candidates
of the 𝑘 value, we will go through the flow mentioned in Figure 1.
Eventually, we can get𝑚 results of accuracy for prediction. We will
select the candidate which has the highest accuracy, and then select
the two nearest candidates where the candidate with the highest
accuracy are included between them.

For example, suppose candidates of the 𝑘 values are {𝑠1, 𝑠2, .., 𝑠𝑚},
where 𝑠1 < 𝑠2 < ... < 𝑠𝑚 . If 𝑠3 achieves the highest accuracy, 𝑠2 and
𝑠4 will be extracted. If 𝑠1 achieves the highest accuracy, 𝑠1 and 𝑠2
will be extracted. With the two nearest candidates, we then perform
a binary-search-like method, which aims to find a better 𝑘-value
iteratively. In each time we get the middle value of the two nearest
candidates, and try to remove half the search towards a higher
accuracy than what the two can achieve. The procedure stops if the
middle value results in a lower accuracy than we have ever seen or
the middle value has been used as a candidate before.

3.2 Edge Reweighting
This section reviews layer-wise propagation first, and details the
implementation of edge reweighting afterwards. Based on graph
𝐺 ′, Eq. (1) can directly be rewritten as,

𝐻 ′(𝑢+1) = 𝜎 (�̃� ′− 1
2 �̃�′�̃� ′− 1

2𝐻 ′(𝑢)𝑊 ′(𝑢)). (4)

In Eq. (4), we can see that the operation, 𝐴′ = �̃� ′− 1
2 �̃�′�̃� ′− 1

2 , nor-
malizes �̃�′ in a symmetric way. More specifically, the operation
assigns a weight for each edge considering the degrees of nodes
in graph 𝐺 ′. Generally, the operation is used when edges of graph
𝐺 ′ are undirected, i.e., 𝐴′ is symmetric. 𝐴′ will be symmetric if 𝐴′

is symmetric. If edges of graph 𝐺 ′ are directed, the operation can
be replaced with 𝐴′ = 𝐷 ′−1�̃�′, so that each row in 𝐴′ sums to one.
That is, weights of edges pointing from each node sums to one.

In many cases, 𝐴′ will not be symmetric if edges of graph 𝐺 ′ are
directed.

Edge reweighting will view the given graph, i.e.,𝐺 ′, as a directed
graph. Typically, an undirected graph can be converted into a di-
rected graph by replacing the undirected edge between each pair of
nodes with two directed edges in opposite direction. Practically, if
edges of the initial graph, i.e., graph𝐺 , are directed, we will use two
directed edges to connect a new node to each of the original nodes
in the same cluster for the stage of node addition. Then for Eq. (4),
we will replace �̃� ′− 1

2 �̃�′�̃� ′− 1
2 with 𝐷 ′−1�̃�′. Note that if edges of

the initial graph are undirected, we will not make any change for
Eq. (4). It is worth mentioning that our edge reweighting method
has two advantages. Firstly, we can consider only the edges point-
ing from (or to) a node in each time, and thus drastically reduce the
complexity of reweighting. Secondly, our method can not only be
applied to undirected graphs, but also directed graphs. Note that no
matter whether edges of graph 𝐺 (and thus, graph 𝐺 ′) are directed
or undirected, the methods introduced below can be applied and
are exactly the same.

Given graph𝐺 ′, we create a vector 𝑏 = (𝑏1, 𝑏2, ..., 𝑏𝑛′)𝑇 ∈ R𝑛′×1,
as parameters to be learned. Each parameter is assigned to exactly
a node of graph 𝐺 ′. The parameter of a node will be added to the
weight of every edge pointing from the node. Formally, we generate
an adjacency matrix, say 𝐵 ∈ R𝑛′×𝑛′ , where

𝐵𝑖 𝑗 = max(𝐴′
𝑖 𝑗 + 𝑏𝑖 , 0),∀𝑖, (𝑖, 𝑗) ∈ 𝐸 ′. (5)

Note that 𝑏𝑖 can be negative, and max(.) forces negative values
to be zero. If 𝐵𝑖 𝑗 equals zero, there is no edge pointing from node
𝑖 to node 𝑗 . That is, some edges can be removed if 𝑏𝑖 is negative.
We then do normalization by �̂� = 𝐷 ′−1𝐵 so that weights of edges
points from each node sums to one. If 𝑏𝑖 is positive and 𝑏𝑖 is much
greater than any of 𝐴′

𝑖 𝑗
with (𝑖, 𝑗) ∈ 𝐸 ′, normalization can make

all of the values of �̂�𝑖 𝑗 with (𝑖, 𝑗) ∈ 𝐸 ′ be almost the same. That is,
parameters {𝑏1, 𝑏2, ..., 𝑏𝑛′} can be used to reduce the difference of
edge weights or remove some edges of graph 𝐺 ′.

Figure 3 gives an illustration. As shown in Figure 3(a), suppose
there is a node associated with 𝑥 ′1, and there are four edges pointing
from the node. A parameter, say 𝑏1, is added for edge reweighting.
As can be seen in Figure 3(b), if 𝑏1 is negative, and 𝑏1 is greater
than or equal to the weight of exactly one edge, the edge will be

Wen-Yu Lee

𝑥1
′

0.4+b10.3+b1

0.2+b1
0.1+b1

(a)

𝑥1
′

0.550.33

0.11

(b)

𝑥1
′

0.25

(c)

b < 0,

0.2 > |b| ≥ 0.1
b ≫ 0.4

≈

0.25≈

0.25≈

0.25≈

≈≈

≈

Figure 3: Illustration of edge reweighting. (a) There are four
edges pointing from 𝑥 ′1 with weights 0.4, 0.3, 0.2, and 0.1, and
a parameter, 𝑏1, is used for edge reweighting. (b) An edge is
removed because 𝑏1 is negative. (c) The edge weights would
be almost the same if 𝑏1 is large enough.

removed from the graph. Note that normalization will make the
sum of the weights of the remaining edges nearly to be one. If 𝑏1 is
positive, and 𝑏1 is much greater than any weight of the edges, as
in Figure 3(c), normalization will make the edge weights be almost
the same.

The resultant layer-wise propagation is as follows:

𝐻 ′(𝑢+1) = 𝜎 (�̂�𝐻 ′(𝑢)𝑊 ′(𝑢)). (6)

Similar to [8, 13], we then define the loss function used to optimize
the parameters as,

𝜁graph = (1 − 𝜆)
𝑛′∑

𝑖, 𝑗=1

(𝑥𝑖 − 𝑥 𝑗
2
2�̂�𝑖 𝑗

)
+ 𝜆

𝑛′∑
𝑖, 𝑗=1

�̂�2𝑖 𝑗 , (7)

where the former encourages nodes with larger distance in features
to have smaller weights, the latter tries to remove noisy edges, and
1 ≥ 𝜆 ≥ 0 is a constant used to control the relative importance
between the two terms. Finally, the loss function of our approach
is set to be 𝜁pred + 𝛽𝜁graph, where 𝛽 ≥ 0 is also a constant used to
control the relative importance. Empirically, 𝜆 and 𝛽 are set to be
0.9 and 0.1, respectively.

4 EXPERIMENTS
We implemented the proposed approach based on PyTorch [14]
and scikit-learn [15]. For comparative studies, we evaluated the
performance of (1) the GCN model [10], (2) the GLCN model [8], (3)
the GRCN model [20], and (4) our model. Note that all of the mod-
els used the same optimizer (i.e, Adam [9]), learning rates, weight
decays, and the number of hidden units, based on the settings of
GRCN. They were also based on PyTorch. For evaluation, we con-
ducted experiments based on seven publicly available benchmark
datasets. The statistics of the datasets are shown in Table 1.

Table 1: Statistics of benchmark datasets.

Dataset #Nodes #Features #Edges #Classes
Cora 2,708 1,433 5,278 7

CiteSeer 3,327 3,703 4,552 6
PubMed 19,717 500 44,324 3
Photo 7,650 745 119,081 8

CoraFull 19,793 8,710 63,421 70
Computers 13,752 767 245,861 10

CS 18,333 6,805 81,894 15

In Table 1, column “#Nodes” lists the number of nodes, “#Fea-
tures” the dimension of each feature vector, “#Edges” the number
of edges, and “#Classes” the number of classes for classification.
Among the datasets, Cora [16], CiteSeer [16], and PubMed [12]
are commonly used as benchmark datasets. The preparation of the
datasets is the same as [19], where 20 instances of each class were
used for training data. Overall, there were 500 and 1, 000 instances
used for validation data and testing data, respectively. As suggested
in [20], Photo, CoraFull, Computers, and CS from [17] were used to
check the scalability of our model on number of nodes, number of
features, graph density, or number of classes. Same as [20], there
were 20 and 30 instances of each class used for training data and
validation data, respectively. For testing data, the classes and in-
stances were first removed if the number of instances of a class is
smaller than 50. We then used the rest of data as the testing data.

Table 2 summarizes the experimental results. For each dataset,
we reported the average results over ten runs with random splits
on training, validation, and testing data (the data numbers were
kept the same). As can be seen, our model outperformed than other
models inmost datasets. Based on the results, we can see that adding
edges is of benefit to high accuracy, because both GRCN and our
model added edges on the original graphs while GCN and GLCN
did not. It is interesting to note that GCN outperformed our model
on the Cora dataset. We thought that the original graph from the
dataset may be good enough. Although our model extended GCN,
such an extension also enlarged the solution space for optimization.
Our model may thus be trapped into a local optimum. Further, the
results in Table 2 motivated us to develop (a) a dataset analyzer to
predict if a technique (e.g., node addition) could be helpful and (b)
a partition approach that helps to apply our model on local graphs,
for future studies.

5 CONCLUSION
This paper has presented a simple while effective extension of GCNs.
The extension is not limited to undirected graphs; it can also be
applied to directed graphs. Briefly, node addition provides com-
munication centers for nodes to share information together. Edge
reweighting not only reweights edges, but also removes noisy edges
for high performance. Besides the directions mentioned above, fu-
ture works include the addition of small graphs and dynamic graph
modification for GCNs.

Graph Convolutional Network with Node Addition and Edge Reweighting for Semi-Supervised Learning

Table 2: Comparison the accuracy (%) of GCN, GLCN, GRCN, and ourmodel, on the benchmark datasets, where the best results
are marked in bold.

Cora CiteSeer PubMed Photo CoraFull Computers CS
GCN 82.13±0.78 69.99±1.29 76.71±2.81 90.16±1.39 60.57±0.29 80.92±1.56 91.44±0.25
GLCN 82.07±0.68 68.83±1.77 76.81±2.47 89.72±1.24 59.93±0.66 79.86±2.20 90.26±0.34
GRCN 82.13±0.87 71.65±1.36 77.09±2.45 90.85±0.97 60.54±0.55 81.77±1.77 91.21±0.27
Ours 81.98±0.96 70.99±1.33 77.25±2.47 91.70±0.72 60.57±0.29 82.07±1.35 92.56±0.28

REFERENCES
[1] T. Agrawal, R. Gupta, and S. Narayanan. 2019. On evaluating

CNN representations for low resource medical image clas-
sification. In Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing. 1363–1367.

[2] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. 2014. Spectral
networks and deep locally connected networks on graphs. In
Proceedings of International Conference on Learning Represen-
tations.

[3] M. Defferrard, X. Bresson, and P. Vandergheynst. 2016. Convo-
lutional neural networks on graphs with fast localized spectral
filtering. In Proceedings of International Conference on Neural
Information Processing Systems. 3844–3852.

[4] D. Duvenaud, D.Maclaurin, J. Aguilera-Iparraguirre, R. Gómez-
Bombarelli, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. 2015.
Convolutional networks on graphs for learning molecular fin-
gerprints. In Proceedings of International Conference on Neural
Information Processing Systems. 2224–2232.

[5] L. Franceschi, M. Niepert, M. Pontil, and X. He. 2019. Learning
discrete structures for graph neural networks. In arXiv preprint
arXiv:1903.11960.

[6] K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 770–778.

[7] S. Jégou, M. Drozdzal, D. Vázquez, A. Romero, and Y. Bengio.
2017. The one hundred layers tiramisu: fully convolutional
DenseNets for semantic segmentation. In Proceedings of Inter-
national Workshop on Computer Vision in Vehicle Technology.

[8] B. Jiang, Z. Zhang, D. Lin, J. Tang, and B. Luo. 2019. Semi-
supervised learning with graph learning-convolutional net-
works. In Proceedings of IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 11313–11320.

[9] D. P. Kingma and J. Ba. 2014. Adam: a method for stochastic
optimization. In arXiv preprint arXiv:1412.6980.

[10] T. N. Kipf and M. Welling. 2017. Semi-supervised classifi-
cation with graph convolutional networks. In Proceedings of
International Conference on Learning Representations.

[11] J. Liu, Q. Zhou, Y. Qiang, B. Kang, X. Wu, and B. Zheng. 2020.
FDDWNet: a lightweight convolutional neural network for
real-time semantic segmentation. In Proceedings of IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing.
2373–2377.

[12] G. Namata, B. London, L. Getoor, and B. Huang. 2012. Query-
driven active surveying for collective classification. In Proceed-
ings of International Workshop on Mining and Learning with
Graphs.

[13] F. Nie, X. Wang, and H. Huang. 2014. Clustering and projected
clustering with adaptive neighbors. In Proceedings of the ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining. 977–986.

[14] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. 2017. Automatic
differentiation in PyTorch. In Proceedings of NIPS Workshop on
Autodiff.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J.
Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and É. Duchesnay. 2011. Scikit-learn: machine learning in
Python. Journal of Machine Learning Research 12, 85 (2011),
2825–2830.

[16] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T.
Eliassi-Rad. 2008. Collective classification in network data. AI
Magazine 29, 3 (2008), 93–106.

[17] O. Shchur, M. Mumme, A. Bojchevski, and S. Günnemann.
2018. Pitfalls of graph neural network evaluation. In arXiv
preprint arXiv:1811.05868.

[18] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio. 2018. Graph attention networks. In Proceedings of
International Conference on Learning Representations.

[19] Z. Yang, W. W. Cohen, and R. Salakhutdinov. 2016. Revisiting
semi-supervised learning with graph embeddings. In arXiv
preprint arXiv:1603.08861.

[20] D. Yu, R. Zhang, Z. Jiang, Y. Wu, and Y. Yang. 2020. Graph-
revised convolutional network. In Proceedings of European
Conference on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases.

[21] W. Yu, H. Zhang, X. He, X. Chen, L. Xiong, and Z. Qin. 2018.
Aesthetic-based clothing recommendation. In Proceedings of
the World Wide Web Conference. 649–658.

[22] D. Zhou, Q. Bousquet, T. N. Lal, J. Weston, and B. Sch¥𝑜lkopf.
2003. Learning with local and global consistency. In Proceed-
ings of NIPS Foundation Advances in Neural Information Pro-
cessing Systems. 321–328.

[23] X. Zhu, Z. Ghahramani, and J. Lafferty. 2003. Semi-supervised
learning using Gaussian fields and harmonic functions. In
Proceedings of International Conference on Machine Learning.
912–919.

A TABLE OF SYMBOLS AND NOTATIONS
Table 3 lists the symbols and notations used throughout this paper.

Wen-Yu Lee

Table 3: Symbols and notations used throughout the paper.

Symbol/Notation Description
𝐴 An adjacency matrix of a graph
𝛽 A constant controls the relative importance between two loss functions
𝑏𝑖 A parameter associated with node 𝑥 ′

𝑖

𝐵 An adjacency matrix of a graph with parameters of edge reweighting
𝑐 The total number of classes for a classification problem
𝐷 A diagonal matrix of node degrees
𝐸 The edge set of a graph
𝐺 A graph with a set of nodes and a set of edges
𝐻 (𝑢) The hidden layer matrix of layer 𝑢
𝑖 An index
𝐼 An identity matrix
𝑗 An index
𝑘 The number of centers for 𝑘-means clustering
𝜆 A constant controls the importance between two loss values
𝐿 The set of nodes with labels
𝑚 The number of distinct numbers for 𝑘-means clustering
𝑛 The total number of instances
𝑝 The dimension of the feature vector of an instance
𝑟 The total number of layers of a GCN
𝑠𝑖 The value of the 𝑖-th candidate number for 𝑘-means clustering
𝑢 A layer index of a GCN
𝑉 The node set of graph 𝐺
𝑊 (𝑢) A weight matrix to be learned for layer 𝑢
𝑥𝑖 The feature vector of instance 𝑖
𝑋 A feature matrix of a set of instances
𝑌 A label matrix that indicates labels of instances
𝑍 A matrix of GCN prediction result of instance labels
𝜁pred A loss function for GCN prediction
𝜁graph A loss function for graph refinement by edge reweighting
.̃ A matrix with self-loops added
𝜎 (.) An activation function
.̂ A normalized matrix
.′ A matrix or a number associated with the graph after node addition
|.| The number of elements of a set.2 The length of a vector

	Abstract
	1 Introduction
	2 Background
	3 Proposed Approach
	3.1 Node Addition
	3.2 Edge Reweighting

	4 Experiments
	5 Conclusion
	References
	A Table of Symbols and Notations

