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ABSTRACT
In this paper, we propose an end-to-end generative retrievalmethod
for sponsored search, which uses neuralmachine translation (NMT)
to generate keywords directly from queries. To ensure that all the
generated sentences are commercial keywords, a Trie-based prun-
ing scheme is designed in the phase of decoding. Combined with
self-normalization and dropping inferior candidates on the fly, 66%
of the decoding time can be saved without degrading the relevance
quality. Both organic and commercial click logs are used as parallel
training data, which can and does encourage themodel to generate
more incremental keywords. To deploy this method as an online
service, an online-offline mixing structure is devised to reduce la-
tency and CPU consumption. This method has been successfully
applied in Baidu’s sponsored search, which has brought a signifi-
cant revenue increase of more than 10%.

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WWW ’21, The Web Conference , April 19–23, 2021, Ljubljana, Slovenia
© 2021 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

CCS CONCEPTS
• Information systems→ Probabilistic retrieval models.

KEYWORDS
sponsored search, keyword retrieval, generativemodel, beam search,
prefix tree, information retrieval, neural machine translation
ACM Reference Format:
Yijiang Lian, Zhijie Chen, Jing Jia, Zhenjun You, Chao Tian, Jinlong Hu,
Kefeng Zhang, Chunwei Yan, Muchenxuan Tong, Wenying Han, Hanju
Guan, Ying Li, Ying Cao, Yang Yu, Zhigang Li, Xiaochun Liu, and YueWang.
2021. An End-to-End Generative Retrieval Method for Sponsored Search
. In WWW ’21: The Web Conference , April 19–23, 2021, Ljubljana, Slove-
nia. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
Sponsored search is an interplay of three entities. Advertisers pro-
vide business advertisements and bid for keywords to target their
audience. Search engines provide platforms where advertisers’ ads
can be shown to users along with the organic results. Users submit
queries to search engines and interact with ads. A modern spon-
sored search engine usually provides flexible match types such as
exact, phrase, broad 1, with which the advertisers can specify how
would their purchased keywords be matched to the online queries.
In the broad match type scenario, an ad may be shown for a query
if it is semantically relevant to the ad’s keyword.
1https://support.google.com/google-ads/answer/7478529?hl=en
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Generally, a sponsored search system consists of three modules:
keyword matching, ad retrieving, and ad selection. In this paper, we
focus on the keyword matching problem for the broad match type.
One great challenge of this problem is the semantic gap between
queries and keywords, since advertisers and users might describe
the same thing in quite different ways. Besides, most ad keywords
are short texts, which increases ambiguity and makes the gap even
more serious. Most sponsored search systems use query rewriting
technique [9, 13, 15, 17] to alleviate this problem, where the key-
word matching process is divided into three separate stages: query
rewrite, boolean retrieval, and relevance filtering. In a real industrial
sponsored search system, these three stages are usually carefully
tuned to balance effect and latency, which greatly limits the sys-
tem’s retrieval ability.

In this paper, we propose an end-to-end generative retrieval
method (GRM) to improve the system’s retrieval performance. In
this method, a standard encoder-decoder neural machine transla-
tion structure is deployed, within which the query is encoded by
a multi-layer Recurrent Neural Network (RNN) encoder into a list
of hidden states, and then a multi-layer RNN decoder is used to
decode the target keyword token by token based on these hidden
states and the previously generated tokens. During inference, a
beam search strategy is used to approximately generate the top 𝑘
best translations.

The motivation of this method is to use translation model’s gen-
eralization ability to produce more relevant keywords. A transla-
tion model is trained on a parallel corpus D of <query, keyword>
pairs. Then we use this model to generate keywords for queries
in D. With a large beam size, new <query, keyword> pairs that
do not exist in the training data would be generated. For example,
in Figure 1, there are two training examples: <query1, keyword1>
and <query2, keyword2>. Since query1 and query2 are quite simi-
lar, the trained model might generalize and transfer the keywords
retrieved by query2 to query1, or even generate more relevant key-
words. In this example, keyword2 is transferred into query1’s trig-
gered list, and keyword3 and keyword4 are newly generated key-
words.

To carry out this idea in a real industrial environment is a chal-
lenging task. Firstly, decoding in sponsored search scenario is a
constrained closed target domain problem, where only keywords
committed by advertisers are permitted during the generation. A
prefix tree is introduced into the decoding phase to fix this prob-
lem. Secondly, the decoding speed of a common beam search strat-
egy is difficult to meet the requirements. Trie-based dynamic prun-
ing combined with dropping inferior candidates on the fly is intro-
duced to address this problem. Thirdly, it is difficult to deploy the
NMT model as an online service due to the limited latency and
computing resources. An online-offline mixing architecture is pro-
posed to solve this problem.

This generative retrieval method has been successfully realized
in Baidu’s sponsored search. We hope this would shed light on the
further design of sponsored retrieval system and NMT’s applica-
tion in industry.

Figure 1: An example which can explain our motivation of
our generative retrieval method.

2 RELATEDWORK
Machine translation is a popular way to alleviate the semantic gap
in information retrieval. With a parallel corpus, machine transla-
tion can learn the underlying word alignment between the target
words and the source words. If we use monolingual parallel data,
semantic synonymy can be detected. Basically, there are two kinds
of applications of machine translation in information retrieval.The
first one usesmachine translation as a discriminativemodel to eval-
uate <query, doc> relevance. Given a query 𝑄 and a document 𝐷 ,
the translation probability 𝑃 (𝐷 |𝑄) or 𝑃 (𝑄 |𝐷) was used as a fea-
ture to boost the calculation of query document relevance [3, 21].
Hillard et al. [6] applied this idea to calculate the commercial query
ad relevance. The second one uses machine translation as a query
rewriting method. Gao et al. [4], Jones et al. [10], Riezler and Liu
[18] treated query rewrite as a statistical machine translation prob-
lem with monolingual training data. Recently, He et al. [5] pro-
posed a sequence-to-sequence deep learning framework to study
the query rewrite.

The most related work is the paper recently published by Lee
et al. [14], which used conditional GAN to generate keywords from
queries. There are several critical points that make our work differ-
ent from theirs:
• The target domain in their translation setting is not closed.

The generated sentence might not be a valid keyword.
• Unlike their approaches, organic and commercial click log

are all used in our training data. This allows the NMT to
generate more words not covered by the existing system.
• Random noise vectors are used in [14] to promote diversity,

whereas our model is fully deterministic.
• Our work concentrates more on addressing the latency im-

pact of deploying the generative model into the real com-
mercial system. Nevertheless, they showed no experiment
results in the industry environment.

Although NMT gives us a nice and simple end-to-end way to
deploy a state-of-the-art machine translation system, its decoding
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efficiency is still challenging. The standard beam search algorithm
implemented by Bahdanau et al. [1] reduced the search space from
exponential size to polynomial size, andwas able to translate about
ten words per second. Hu et al. [8] built a priority queue to further
reduce the search space. And they also introduced a constrained
softmax operation that uses a phrase-based translation system to
generate the constrained word candidates. Since lots of unneces-
sary hypotheses are removed, the computational efficiency is great-
ly improved.

3 PROBLEM FORMULATION
In the following formulas, we use ®𝑞 to denote the vector of 𝑞, capi-
tal letters to represent sequences(e.g. 𝑄,𝐾 ), squiggle letters to rep-
resent set(e.g. K) and lower case to represent individual tokens
in a sequence (e.g. 𝑞1, 𝑘2), 𝑘<𝑖 to represent the token sequence
𝑘0, 𝑘1, . . . , 𝑘𝑖−1, where 𝑘0 is a special beginning of sentence sym-
bol that is prepended to every target keyword.

Let (𝑄,𝐾) be a <query, keyword> pair, where𝑄 =𝑞1, 𝑞2, . . . , 𝑞𝑀
is the sequence of𝑀 tokens of the source query𝑄 , and 𝐾 = 𝑘1, 𝑘2,
. . . , 𝑘𝑁 is the sequence of 𝑁 tokens in the target keyword 𝐾 . From
the probabilistic perspective, machine translation is equivalent to
maximizing the log-likelihood of the conditional probability of se-
quence 𝐾 given a source query 𝑄 , i.e. log 𝑃 (𝐾 |𝑄), which can be
decomposed into factors:

log 𝑃 (𝐾 |𝑄) =
𝑁∑
𝑖=1

log 𝑃 (𝑘𝑖 |𝑘<𝑖 ;𝑄) (1)

Our model follows the common sequence to sequence learning
encoder-decoder framework [20] with attention [1]. Under this
framework, an encoder reads the input query 𝑄 and encodes its
meaning into a list of hidden vectors:

®𝑄 = ( ®𝑞1, ®𝑞2, . . . , ®𝑞𝑀 ) = Encoder(𝑞1, 𝑞2, . . . , 𝑞𝑀 ) (2)

where ®𝑞𝑖 ∈ R𝑛 is a hidden state at time 𝑡 . In our experiment, the
encoder is mainly implemented by RNN:

®𝑞𝑖 = RNN(𝑞𝑖 , ®𝑞𝑖−1) (3)

And the decoder is trained to predict the probability of next to-
ken 𝑘𝑖 given the hidden states ®𝑄 = ( ®𝑞1, ®𝑞2, . . . , ®𝑞𝑀 ) and all the
previously predicted words 𝑘1, . . . , 𝑘𝑖−1

𝑃 (𝑘𝑖 |𝑘<𝑖 ;𝑄) ≈ 𝑃 (𝑘𝑖 |𝑘<𝑖 ; ®𝑄) . (4)

During inference, target tokenswould be decoded one by one based
on this distribution, until a special end of sentence symbol (<e>) is
generated.

In order to focus on different parts of the source query during
decoding, an attention mechanism [1] is introduced to connect the
hidden states of decoder and encoder. Let 𝑘𝑖−1 be the decoder out-
put from the last decoding time step 𝑖−1, ®𝑐𝑖 be the attention context

for the current time step 𝑖 , which is calculated according to the fol-
lowing formulas:

®𝑐𝑖 =
𝑀∑
𝑗=1

𝛼𝑖 𝑗 ®𝑞 𝑗 ,

𝛼𝑖 𝑗 =
exp(𝑒𝑖 𝑗 )

𝑀∑
𝑝=1

exp(𝑒𝑖𝑝 )
,

𝑒𝑖 𝑗 = Atten(®𝑘𝑖−1, ®𝑞 𝑗 )

(5)

where Atten could be implemented as a dot product or feed for-
ward network and ®𝑘𝑖 is the hidden state vector at time step 𝑖 .

The RNN decoding phase is computed as follows:
®𝑘𝑖 = RNN(®𝑘𝑖−1, 𝑘𝑖−1, ®𝑐𝑖 ) (6)

𝑠𝑖 (𝑤) = 𝑠 (𝑘𝑖−1, ®𝑘𝑖 , ®𝑐𝑖 ,𝑤) (7)

𝑝 (𝑘𝑖 = 𝑤 |𝑘<𝑖 ;𝑄) =
exp(𝑠𝑖 (𝑤))∑
𝑤′ exp(𝑠𝑖 (𝑤 ′))

(8)

where 𝑠𝑖 (𝑤) is the unnormalized energy score of choosing 𝑘𝑖 to
be𝑤 .

4 METHOD
4.1 Trie-based Pruning
One challenge in applying neural machine translation to keyword
retrieval task is that our target space is a restricted fixed set of sub-
mitted keywords, whereas in general translation, the target space
is unconstrained. One possible method to mitigate this problem is
to generate as many candidates as possible, then pick out the real
keywords. However, this is quite inefficient, since NMT decoding
is quite time-consuming.

In this paper, we devise a novel pruning technique in beam
search called Trie-based pruning to fix this problem. Trie (also
known as a prefix tree) is a popular data structure widely used
in query auto-completion[7, 11]. In our scenario, a prefix tree 𝑇K
for the keyword repositoryK is built ahead of the decoding phase.
First of all, each keyword 𝐾 in K is tokenized into a token list,
where a start symbol <s> is put at the front and an end symbol
<e> is put at the end.Then we use these token lists to build a prefix
tree keyed by tokens as is illustrated in Figure 2.

Suppose we are at the 𝑖th set of the decoding phase, 𝑖 − 1 tokens
have been generated, the beam search size is 𝐵, and 𝐵 hypotheses
are kept in the set BeamSet = {𝐾̂ 𝑗

𝑖−1 = (𝑘 𝑗1 , 𝑘
𝑗
2 , . . . , 𝑘

𝑗
𝑖−1), 1 ≤ 𝑗 ≤

𝐵}. With a prefix tree𝑇K , we can get all the valid suffix tokens fol-
lowing the trie path 𝐾̂ 𝑗

𝑖−1. Only these valid suffix tokens would be
considered in the probability inference stage of 𝑝 (𝑘 𝑗𝑖 |𝑘

𝑗
1 , . . . , 𝑘

𝑗
𝑖−1),

all the others would be pruned away. Figure 3 shows the whole
pruning process. Trie-based pruning technique guarantees that all
the generated sentences are valid keywords, which greatly improves
efficiency.

4.2 Self-normalization
One serious performance bottleneck at the NMT inference decod-
ing stage is the computation of the denominator of softmax, i.e.
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Figure 2: A schematic diagram for a prefix tree.

Figure 3: At the inference stage, we operate the beam search
based on a prefix tree to decode the query into a closed key-
word set.

∑
𝑤′ exp(𝑠𝑖 (𝑤 ′)) in equation 8, as it involves summarizing over the

entire output vocabulary space. Following Devlin et al. [2]’s work,
we use the self-normalizing trick to speed up the decoding. To be
specific, during training, an explicit regularization loss is added to
the original likelihood loss in Equation 1 to encourage the softmax
normalizer to be as close to 1 as possible.

𝐿 =
∑
𝑖

log(𝑃 (𝑘𝑖 |𝑘<𝑖 , 𝑄)) − 𝛽 (log(
∑
𝑤′

exp(𝑠𝑖 (𝑤 ′))) − 0)2

=
∑
𝑖

log(𝑃 (𝑘𝑖 |𝑘<𝑖 , 𝑄)) − 𝛽 (log(
∑
𝑤′

exp(𝑠𝑖 (𝑤 ′))))2
(9)

When decodingwith a self-normalizedmodel, the costly step for
calculating the denominator

∑
𝑤′ exp(𝑠𝑖 (𝑤 ′)) is avoided, we only

have to compute the numerator 𝑠𝑖 (𝑤). Furthermore, combinedwith
a prefix tree, muchmore time can be saved, since only a small num-
ber of the valid suffix words have to be calculated,

4.3 Drop Inferior Hypotheses OnThe Fly
Another useful trick in our implementation is to remove the in-
ferior hypotheses on the fly. Generally, a likelihood threshold is
set to filter the final generated keywords at the end of decoding.
This threshold can also be used in the internal process of decod-
ing. As we decode a new token based on the current hypothesis,
the likelihood of hypotheses would be multiplied by another prob-
ability factor, therefore the full likelihood decreases as decoding
proceeds. Based on this consideration, if the current hypothesis’s
likelihood is lower than the given threshold, we would not expand
it out later. This trick can generate more qualified keywords (with
a likelihood above the threshold) in the final hypothesis set. Com-
bined with the Trie-based pruning, the total decoding time would
also be decreased.

4.4 Algorithm
Suppose D is the parallel training data set composed of <query,
keyword> pairs,K is the keyword repository, which is a snapshot
of all the keywords committed by advertisers, 𝐵 is the beam size,
Q is the query set. For each query in Q, we want to get 𝐵 relevant
keywords in K .

The whole process can be divided into three steps:
(1) Train a Self-normalized NMT model 𝑀 with monolingual

parallel data D.
(2) Build a prefix tree 𝑇 for the keyword repository K .
(3) For each query in Q, using𝑀 and𝑇 to decode out 𝐵 relevant

keywords in K .
The decoding algorithm is shown in Algorithm 1.

4.5 An Online-Offline Mixing Architecture
It is well known that search queries are highly skewed and exhibit
a power-law distribution [16, 19]. That is, at a fixed time, the most
popular queries compose the head and torso of the curve, in other
words, approximately 20% of queries occupy 80% of the query vol-
ume. Inspired by this idea, we design an online-offline mixing ar-
chitecture (Figure 4) to deploy our GRM as an online service. Un-
der this framework, the query volume is divided into two parts:
frequent queries and infrequent queries. Frequent queries are col-
lected from query logs in a period, and the size is in the tens of
millions. All the other queries are considered infrequent. And we
use different strategies to tackle these two flows.

For frequent queries, the retrieval process consists of two phases:
preprocessing phase and online phase. In the preprocessing phase,
our translation is done ahead of time, and the translated keywords
for each query are saved in a lookup table. In the online phase,
the translated keywords can be obtained immediately by looking
up the table. And the preprocessing is repeated periodically to fol-
low the changes in the query population and keyword supply over
time. In this scenario, all computations are done in an offline mode,
where complex models can be used to generate high quality key-
words.
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Algorithm 1: Beam Search with Trie-based pruning and
dropping inferior hypotheses on the fly.
Input: Self-normalized NMT𝑀 , Keyword Prefix tree 𝑇 ,

Beam Size 𝐵, score threshold 𝑠𝑚𝑖𝑛

/* Suppose the beam size is 𝐵, and the score threshold for

dropping inferior hypotheses on the fly is 𝑠𝑚𝑖𝑛. */

Output: Keywords set 𝑂𝑢𝑡
1 cur_buffer← ∅ // to store all the current hypotheses that

need to be extended

2 tmp_buffer← ∅ // a temporal variable to be exchanged with

cur_buffer

3 𝑂𝑢𝑡 ← ∅ // to store the final results

4 put <s> into cur_buffer
5 while cur_buffer is not empty and size(𝑂𝑢𝑡) < 𝐵 do
6 for each hypothesis 𝑐 in cur_buffer do

/* each hypothesis 𝑐 in cur_buffer would be extended

*/

7 get the valid suffix word set 𝑆𝑐 for 𝑐 with 𝑇
/* Using prefix tree 𝑇 to get the suffix word set 𝑆𝑐

*/

8 for each suffix word𝑤 in 𝑆𝑐 do
9 extend partial hypothesis 𝑐 with𝑤 to get new

hypothesis 𝑐 = [𝑐;𝑤]
10 using𝑀 to inference the hidden state vector

defined in Equation 6
11 calculate score 𝑠𝑐 for 𝑐 according to Equation 7
12 if 𝑠𝑐 > 𝑠𝑚𝑖𝑛 then

/* 𝑐 is a good hypothesis */

13 if 𝑤 == <e> then
/* 𝑐 has been decoded completely */

14 put 𝑐 into 𝑂𝑢𝑡
15 end
16 else

/* 𝑐 needs to be extended later */

17 put 𝑐 into tmp_buffer
18 end
19 end
20 end
21 end

/* sort and get the top candidates in tmp_buffer */

22 sort elements 𝑐 in the tmp_buffer according to their
score 𝑠𝑐 and keep only the top 𝐵− size(𝑂𝑢𝑡).

/* switch the two buffers */

23 cur_buffer← tmp_buffer
24 tmp_buffer← ∅
25 end
26 return 𝑂𝑢𝑡

For infrequent ad-hoc queries, the translation has to be con-
ducted fully from scratch. Due to limited latency, we implemented
a simple model.

Figure 4: To deploy the GRM as an online service, an online-
offline mixing architecture is designed.

5 OFFLINE EXPERIMENTS
5.1 Setup
Dataset.The training data is sampled from one month’s click web
log of the search engine, which comprises two parts: organic web
log’s <query, title> pairs and the sponsored web log’s <query, key-
word> pairs. And the size of the training data is about 500 million.
1000 queries and their corresponding clicked keywords have been
sampled from the sponsored click log to form the testing dataset.
Vocabulary. The vocabulary contains 100,000 tokens which are
the most frequent in the training dataset.
Prefix Tree.The prefix tree is built on the keyword repository. As
shown in Table 1, the average number of suffixes decreases sharply
as the depth of the trie increases. This confirms our motivation for
utilizing a prefix tree to prune the beam search.

Table 1: Statistics of Suffix Number

Level Mean Suffix Number

0 91100
1 73.72
2 3.62
3 1.77
4 1.35
5 1.17
6 1.09
7 1.05

5.2 Implementation Details
The offline experiments are run on a machine equipped with a 12-
core Intel(R) Xeon(R) E5-2620 v3 clocked at 2.40GHz, a RAM of
256G, and 8 Tesla K40m GPUs.

The NMT model is implemented with a four-layer LSTM en-
coder and a four-layer LSTM decoder with an attention mecha-
nism, whose encoder and decoder hidden size are both set to 512.
The parameter 𝛽 in equation 9 is carefully chosen to be 0.01 by grid
search. And the loss function is minimized with an initial learn-
ing rate of 0.0005 by Adam[12] with a batch size of 128. With the
trained NMT model, decoding is conducted on the testing dataset
with a beam size of 30.

Three kinds of decoding methods are implemented for compar-
ison, which are abbreviated as follows:
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• ST is the standard beam search method.
• TP denotes the trie-based pruning method.
• DropOTF + TP denotes the strategy of dropping inferior hy-

potheses on the fly in the trie-based pruning method. The
dropping threshold is set to -6.0.

5.3 Decoding Time Analysis
The first two columns in Table 2 show the result of decoding time
comparison: TP reduces the total decoding time by around 45 per-
cent, DropOTF + TP reduces it by about 66 percent. This improve-
ment of decoding efficiency contributes a lot to the acceleration of
the offline routine update presented in Figure 4.

For a detailed analysis, three key steps in beam search are se-
lected.

(1) Inference step represents the computation of the hidden state
vector defined in Equation 6, which corresponds to line 10
in Algorithm 1.

(2) Score step represents getting scores for candidate tokens.
For ST, it corresponds to getting unnormalized scores in
Equation 7 and then operating softmax in Equation 8. For
TP and DropOTF + TP, the softmax operation is avoided by
self-normalization and the score stepmeans getting the valid
suffix tokens’ scores defined in Equation 7, corresponding to
line 11 in Algorithm 1.

(3) TopK step represents sorting and getting top k candidates,
which corresponds to line 22 in Algorithm 1.

Time consumed in these steps is respectively recorded.
As is shown in Table 2’s last three columns, it’s surprising that

the reduction of time mainly comes from TopK instead of Score.
This could be explained by the fact that: TopK contains a lot of CPU-
intensive operations(like sorting), which results in a large amount
of time spent on data communication between GPU and CPU.This
makes it the most dominant time-consuming part of the whole pro-
cess. TP and DropOTF + TP can effectively reduce the number of
candidate hypotheses(which means the iterations of line 6 in Al-
gorithm 1 would be reduced), thus greatly reducing the time con-
sumed by TopK. On the other hand, the Score step does not take
much time because the softmax operation runs on GPUs which is
highly efficient in matrix multiply.

Table 2: Average time spent totally and average time spent
on critical steps (in millisecond) for decoding a query by dif-
ferent beam search strategies.

Beam Search Total Inference Score TopK
ST 598.993 108.382 11.198 440.351
TP 330.395 107.506 7.482 95.965

DropOTF + TP 203.395 90.663 5.933 73.970

5.4 Relevance Evaluation
With the same trained model, the three decoding strategies men-
tioned above are used to generate keywords for queries in the test-
ing Dataset. For each strategy, 400 query-keyword pairs are sam-
pled from the generated results and sent to professional human
judges for three grade labels: good, fair, and bad.

As is shown in Table 3, the TP method has reduced the bad case
proportion from 18.0% to 9.7%, and DropOTF + TP further reduced
it to 7.2%. This demonstrates that: under the condition of a great
speedup, our method can still generate high-quality keywords.The
BLEU results further confirm our conclusion.

Table 3:Query-keyword relevance evaluation for the decod-
ing result generated by different beam search strategies.The
H-xxx columns indicate the proportions of three grade lev-
els judged by humans.

Beam Search H-Good
%

H-Fair
%

H-Bad
% BLEU

ST 38.9 43.0 18.0 33.0
TP 49.3 41.0 9.7 33.6

DropOTF + TP 52.5 40.3 7.2 33.8

5.5 Delta Evaluation
Our main concern is whether the GRM model can generate a sig-
nificant number of candidates that have not been retrieved by the
current system. Therefore, we evaluate the Δ between keywords
retrieved by models trained on different training datasets.

To make more diversified results, <query, title> pairs in organic
click data have also been introduced as the training data. Although
titles are quite different from keywords, which might result in a
low validity of the generated keywords, TP can fix this problem.
The experiment in Figure 5 shows the necessity of using Trie-based
Pruning. For a model trained with organic click data, only a small
number of the ST generated sentences are valid keywords. As the
beam size increases, the number of valid keywords increases quite
slowly. Especially, when the beam size is set as large as 300, only
8% of the results are valid keywords.
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Figure 5: For a model trained with organic <query, title>
click data, only a small number of the results produced by
ST are actual keywords .

There are three sets for comparison:
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• Current represents all the <query, keyword> pairs in the
testing dataset.
• Sponsor represents the translation result produced by amodel

trained with sponsored click data.
• Organic represents the translation result produced by amodel

trained with organic click data.
Both Sponsor and Organic use DropOTF + TP as their decoding
scheme.

Suppose the comparing set is R, and the base set is T , we define
the evaluation metrics as follows:

Δ =
|R − T |

|{𝑞𝑢𝑒𝑟𝑖𝑒𝑠 𝑖𝑛 T }|

𝑅𝑎𝑡𝑖𝑜 =
|R − T |
|T |

As is shown in table 4, the NMT model has a very good gener-
alization ability that using sponsored data alone can bring about
great Δ. With organic data, more and extra Δ can be got.

Table 4: Evaluation.

Comparing set Base set Δ 𝑅𝑎𝑡𝑖𝑜(%)
Sponsor Current 26.42 1253
Organic Current 28.3 1270
Organic Sponsor 24.01 80

5.6 DropOTFThreshold Selection
The above experiments have shown that DropOTF + TP can reduce
the decoding time greatly without compromising quality. How-
ever, the selection of the threshold for dropping inferior candidates
is a trade-off among efficiency, quality, and quantity of results.

Table 5 shows that: as the threshold increases, the decoding time
and the number of output keywords decrease, since more candi-
dates are dropped in the beam search process. The BLEU value in-
creases with the threshold for the same reason.

Table 5:The selection of theDropOTF threshold.The last col-
umn denotes the average number of generated keywords.

Threshold Decoding
Time(ms) BLEU Keywords

Number

-6.5 221.369 33.6 28.5
-6.0 203.395 33.8 27.6
-5.5 184.045 34.3 26.2
-5.0 149.851 35.1 23.6
-4.5 119.557 36.1 19.7
-4.0 100.174 37.4 14.9

5.7 Case Study
Table 6 shows some typical results generated by GRM. From these
cases, we can see that:
• The GRM model has great generalization ability. For query
Restaurant recommendation inHuimin Street, only one <query,
keyword> instance is found in the training data, which is

<Restaurant recommendation in Huimin Street,Huimin Street
snacks>. However, our model can generate two extra high-
quality keywords: Which restaurant in Huimin Street is de-
licious and Huimin Street Food Guide. This further confirms
our motivation mentioned in the introduction.
• In most cases, semantic meanings have been learned by the

translation model. And the model is capable of generating
lots of paraphrases. For example, keyword Which place is
suitable for travel in summer perfectly matches query Places
worth visiting in summer.
• The semantic relevance of different entities has been cap-

tured, which can be shown in this case: keyword How do
you like XiaoXiong thermal lunch box is generated for query
How do you like Tiger thermal lunch box.
• However, sometimes GRM might misunderstand the query

and generate irrelevant results. For example, (怎么炒黄金,
How to invest in gold) was generated for query (黄金鲽鱼的
做法, Cooking methods for Yellowfin Sole). In Chinese, these
two sentences share the same term 黄金, and the charac-
ter 炒 has diverse meanings such as investing and cook-
ing. This polysemous phenomenon may make it difficult for
the model to capture its semantic meaning. Another reason
might be that there are not many similar queries in the train-
ing data.

6 ONLINE EXPERIMENTS
As mentioned in subsection 4.5, our GRM service is implemented
with a mixing online-offline architecture. To be specific, for fre-
quent queries (with a size of tens of millions), their GRM-triggered
keywords are decodedwithGPU by a largemodelmentioned in the
offline experiment and these results are saved in a Key-Value table.

For infrequent queries, corresponding GRM keywords are de-
coded with CPU from scratch by a simple model, which is a single
layer GRU encoder and a single layer GRU decoder both with a
hidden size of 128. To guarantee the keywords’ quality, online rel-
evance judgment is conducted after translation. This mixed frame-
work helps us to save more than 70% of CPU resources.

We use two metrics to evaluate the performance of our GRM
service.
•CPM:CPM denotes revenue received by search engine for 1000

searches, which can be formalized as revenue
#{searches} × 1000.

•CTR:CTR denotes the average click ratio received by the search
engine, which can be formalized as #{clicks}

#{searches} (one search means
one submit of a query).

Table 7 shows the online A/B test result for the GRM service.
The GRM system has contributed to a CPM growth of 13.8%, which
is a dramatic improvement. CTR has increased by 15.4%, which
demonstrates that the GRM does create a lot of new links for the
underlying relevant query-keyword pairs, which brings about a
good deal of user clicks.

7 CONCLUSIONS
In this paper, we have proposed a novel generative retrievalmethod
for sponsored search. The motivation is that with a larger beam
size, the seq2seq model might generate incremental keywords that
can not be retrieved by the current system. To make the decoded



WWW ’21, The Web Conference , April 19–23, 2021, Ljubljana, Slovenia Lian, et al.

Table 6: Some typical keywords generated by GRMmodel.

Query Generated Keywords Label

回民街饭店推荐 回民街美食攻略 Good
Restaurant recommendation in Huimin Street Huimin Street Food Guide Good
回民街饭店推荐 回民街哪家好吃 Good
Restaurant recommendation in Huimin Street Which restaurant in Huimin Street is delicious Good
女生什么时候发育 女孩发育时间表 Good
When do girls start developing physically Timing and stages of girls’ physical development Good
女生什么时候发育 女孩子多大开始长个子 Fair
When do girls start developing physically When do girls start growing in height Fair
虎牌保温饭盒怎么样 小熊保温饭盒怎么样 Fair
How do you like Tiger thermal lunch box How do you like Xiaoxiong thermal lunch box Fair
夏天值得一游的地方 夏天适合去哪里旅游 Good
Places worth visiting in summer Which place is suitable for travel in summer Good
黄金鲽鱼的做法 怎么炒黄金 Bad
Cooking methods for Yellowfin Sole How to invest in gold Bad

Table 7: Online A/B Test performance of the GRM system.

Indicator Improvements

CPM +13.8%
CTR +15.4%

sentences are all valid keywords, a Trie-based pruning mechanism
has been introduced. Trie-based pruning coupled with dropping
inferior candidates on the fly saves 66% of the decoding time with-
out degrading the relevance quality. Further, taking advantage of
the power-law distribution of queries, a mixed online-offline ar-
chitecture has been constructed, which makes GRM a real indus-
trial service. This method has been successfully applied in Baidu’s
commercial search engine, which has generated a significant num-
ber of incremental keywords, resulting in a substantial revenue in-
crease by more than 10%.
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