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ABSTRACT
In a large-scale Spoken Language Understanding system, Natural
Language Understanding (NLU) models are typically decoupled, i.e,
trained and updated independently, from the upstream Automatic
Speech Recognition (ASR) system that provides textual hypotheses
for the user’s voice signal as input to NLU. Such ASR hypotheses
often contain errors causing severe performance degradation as the
downstream NLU models are trained on clean human-annotated
transcripts. Furthermore, as the ASR model updates, the error distri-
bution drifts making it even harder for NLU models to recover and
making manual annotation of erroneous ASR hypotheses impracti-
cal.

In this paper, we investigate data-efficient techniques applicable
to a wide variety of NLU models employed in large-scale production
environments to make them robust to ASR errors. We measure the
effectiveness of such techniques as both the ASR error distribution
and usage patterns change over time.
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• Computing methodologies → Speech recognition; Supervised
learning; Neural networks.
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1 INTRODUCTION
Spoken Language Understanding (SLU) systems quickly became a
staple part of people’s day to day activities. Cars, personal comput-
ers, phones and other consumer devices are equipped with personal
assistants responding to voice commands. Behind each of these prod-
ucts there is an SLU system, most widely used of which, to name a
few, are Siri, Google Assistant, Alexa and Cortana. Implementing
SLU with comparable functionality requires significant effort from
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many engineers and scientists. To enable efficient participation of so
many people in the development process and support fast model iter-
ation, such SLU systems are typically decoupled into a multitude of
interacting components, each solving its separate task. Thus, recent
push in the academic community [8, 12, 17] towards powerful end-
to-end SLU approaches may not be practical to adopt for complex
SLU systems.

Two major parts of a typical SLU system are the Automatic
Speech Recognition (ASR) and the Natural Language Understand-
ing (NLU) components. ASR is tasked with performing necessary
processing to convert user’s speech into text. Natural Language
Understanding (NLU) component [14] works on the output of the
ASR system predicting a domain (Domain Classification task or
DC), intent (Intent Classification – IC) and performing slot filling
(Named Entity Recognition or NER). For example, for utterance
"what is the temperature in Barcelona" a typical pipeline could
output domain:weather, intent:get_weather and the fol-
lowing NER annotation:

what is
O

the temperature
request

in
O

Barcelona
location

.

Due to this separation, ASR errors propagate to downstream NLU
components at times causing severe performance degradation [14].
If NLU component is trained and evaluated solely on clean human-
annotated transcripts then it will have little to no chance to recover
from such errors. Additionally, NLU models trained to capture se-
mantic similarity between words can have a hard time dealing with
phonetic ambiguity, which is the main cause of ASR errors. Thus,
measures have to be implemented to make NLU systems robust to
upstream errors. Recently this problem has attracted considerable
interest from researchers proposing a wide variety of approaches to
mitigate this drop in performance [6, 14, 21].

Additional challenges arise when trying to solve the issue of ASR
errors in a large-scale SLU system. Firstly, the ASR component is
periodically updated with the new releases causing a drift in both the
error distribution and the distribution of any auxiliary signals, such
as confidence scores. Thus, a system trained to be robust to errors
produced by a particular release of the ASR system can fail to adjust
to the newer versions. Secondly, the NLU itself can be decoupled
with multiple models of varying complexity being deployed at the
same time, requiring a potential robustness solution to be applicable
to as many model families as possible with little or no modification.
In third, the usage patterns change in response to new trends and new
features which, compounded with periodic ASR releases, further
exacerbates the input distribution drift. Finally, real-world SLU
systems can have strict constraints on both the inference and the
training times to maintain reasonable operational costs.

In this paper, having these challenges in mind, we investigate three
simple techniques to improve downstream model robustness to ASR
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errors: Data Augmentation, Adversarial Training and a Confidence-
Aware Layer. We design these approaches to be as data-efficient,
lightweight and model-agnostic as possible to be applicable to a
wide selection of NLU models while introducing as little overhead
to production latency and operational costs as possible. We showcase
this flexibility by applying them to a number of domain classification
(DC) models of varying complexity.

Then, we measure the performance of the proposed approaches
in presence of ASR errors. To this end, we employ different snap-
shots of our internal test and training sets covering roughly a one
year period. This allows us to measure the effectiveness of these
techniques as the input distribution starts to drift due to new ASR
model releases and changes in usage patterns. We employ the fol-
lowing evaluation protocol which we suggest to be adopted both
by industry and academia in future to ensure model robustness to
ASR errors in presence of various distribution drifts. We measure the
proposed and the baseline NLU model performance using both the
human-annotated transcripts and the ASR hypotheses as input. A suc-
cessful model is expected to show both (i) significant improvement
as measured on ASR hypotheses and (ii) absence of degradation as
evaluated on transcripts. The former gives us a measure of model
robustness to ASR errors produced by a specific ASR system, while
the latter serves as a proxy measure to the ability of the algorithm to
generalize and potentially adapt to distribution drifts.

The rest of the paper is organized as follows. In Section 2 we sum-
marize related work, while Section 3 describes proposed robustness
approaches. Section 4 defines models, datasets and metrics used
to measure robustness performance. Section 5 provides in-depth
evaluation of the proposed approaches. Section 6 concludes the
paper.

2 RELATED WORK
Various previous works tackled the problem of model robustness
to ASR Errors. A number of data augmentation techniques were
proposed exploiting ASR hypotheses [3, 11]. Further improvements
proposed to leverage word confusion information stored in the Word
Confusion Network (WCN) [5, 7, 18, 19]. In [7], the authors pro-
posed a LatticeRNN approach which builds an embedding from the
lattice generated by the ASR. However, these approaches are data-
intensive and time-consuming since, as the ASR model improves
over time, previously annotated ASR one-best hypotheses become
stale and cannot be used for training. To avoid this problem, Simon-
net et al. [15] proposed an approach to simulate ASR errors from
transcriptions and showed that the noising process helps to improve
the robustness of the SLU system to ASR errors especially in case
of insufficient training data.

A number of studies aimed at improving the representation learn-
ing instead. Following the success of learning continuous word
representation, e.g. word2vec, in [13, 14] the authors came up with
a confusion2vec [2], where the output embeddings contain not only
semantic and syntactic relations of words in human language but
also acoustic relationship between words. Similarly, Chung and
Glass [2] designed a speech2vec architecture based on a RNN
Encoder-Decoder framework and a skipgram or continuous bag-
of-words training methodology. The resulting embedding has the
capacity of capturing speech signal not in plain text. Huang and

Chen [6] proposed to add a confusion loss to the task loss on top of
the Embeddings from Language Model (ELMo) model during the
fine-tuning stage. This confusion loss penalizes a negative cosine
distance between the Language Model (LM) representations of each
confusion word pairs, forcing the language model to generate simi-
lar contextualized embedding representation for the confusion word
pairs. In Zhu et al. [21], the problem was approached from the per-
spective of training and evaluation mismatch. The proposed approach
uses one layer of shard BiLSTM encoder and three task-oriented
BiLSTM decoders. During model training, it forms a multi-task
learning problem where the first task is a slot-tagging task over an-
notated transcription; the second is an unsupervised reconstruction
task for both transcript and ASR hypotheses; the third is another
task-invariant task where for each intermittent hidden output from
the shared encoder layer, another FNN is used to classify them as
either label or ASR hypotheses or transcription. The experimental
results suggest that with the extra loss, the learned representation
makes the model robust to ASR errors.

There are also approaches that aims to solve this problem from
the ASR perspective. Soni et al. [16] proposed to model additive
noise and channel mismatch distortion using a parametric generative
model. They demonstrated that their proposed approach reduces the
word error rate for ASR in unseen conditions.

Finally, our Data Augmentation and Adversarial Training im-
plementation is closely related to the one proposed in Ruan et al.
[11]. This paper is a followup investigation focusing on deployment
considerations of these approaches in a large-scale SLU system.

3 MODEL ROBUSTNESS TO ASR ERRORS
A large NLU system usually consists of three statistical models:
a domain classifier (DC), intent classifier (IC) and a named entity
recognition (NER) components. As mentioned above, in this paper
we specifically focus on DC robustness, however, approaches de-
scribed here can be applied with little or no modification to IC or
any other classification task. Some modifications will be required
for NER component [11].

Here we detail three techniques that we used to improve DC ro-
bustness to ASR errors: Data Augmentation, Adversarial Training
and Confidence-Aware Layer. These approaches were designed with
the following production considerations in mind: (i) be data-efficient:
no additional requirements for data annotation should be imposed
and the approach should not significantly degrade training and infer-
ence time, (ii) be applicable to a wide range of models in a plug and
play fashion.

Our Data Augmentation (DA) is a relatively straightforward ap-
proach: for utterances in the training set we add the corresponding
1-best hypotheses from the ASR output with the same domain label.
DA is completely model-agnostic and can be applied during the
data pre-processing step, which makes implementing it completely
transparent to model builders in a large organization. The main de-
sign consideration for DA is the selection of the source of the ASR
hypotheses. As the ASR component evolves, the error distribution
shifts, potentially making NLU model trained on the old distribution
less effective. Updating the entire training set every time the ASR
is changed can be impractical as it is both costly to perform and
takes time. To avoid this issue, we show the effect of different ASR
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Figure 1: Overview of the Confidence-Aware Layer architecture.

update strategies on model performance. Our models were trained
with an early stopping criteria on a validation set. Curiously, both
the baseline and the augmented system took comparable number of
updates to converge, making DA training time similar to baseline.
Note that hypotheses beyond the 1-best can also be used to augment
the training set, however, the more noisy the hypotheses, the more
likely it is to change the semantics of the input utterance and cause
generalization problems during training.

To allow for the greater control over the model behavior a gener-
alization of DA called Adversarial Training (AT) was proposed [11].
Inspired by recent Adversarial Training approaches the idea is to
consider ASR errors as a source of input perturbations. Formally,
given the loss function L(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑝𝑟𝑒𝑑 ) for the target model, where
𝑦𝑡𝑟𝑢𝑒 is a true label, 𝑦𝑝𝑟𝑒𝑑 is a predicted label given the input 𝑥𝑝𝑟𝑒𝑑
the resulting objective function will be defined as follows:

𝐽 = 𝛽
(
L(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑡𝑟𝑎𝑛𝑠 ) + 𝛾L(𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑎𝑠𝑟 )

)
+ 𝛼𝐷𝐾𝐿 (𝑦𝑡𝑟𝑎𝑛𝑠 | |𝑦𝑎𝑠𝑟 )

where 𝛽 = 1−𝛼
1+𝛾 and 𝛼 ∈ [0, 1). 𝑦𝑡𝑟𝑎𝑛𝑠 and 𝑦𝑎𝑠𝑟 are target model

predictions given respectively the transcription 𝑥𝑡𝑟𝑎𝑛𝑠 and the cor-
responding ASR hypothesis 𝑥𝑎𝑠𝑟 as input; 𝐷𝐾𝐿 is a KL-divergence.
KL-divergence term ensures consistency of predictions for the same
utterance regardless of whether it is based on a clean transcription
or on ASR output containing an error. Note that when 𝛼 = 0 this
approach turns into DA. Parameter 𝛾 is either set to 1 or equal to the
ASR confidence score for the corresponding input sample.

In the above formulation semantics of the input utterance can
change due to an ASR error: user saying "bye iphone" can be mis-
heard as "buy a phone", yielding completely different domain in DC.
Thus, having the same label when computing L𝑎𝑠𝑟 and 𝐷𝐾𝐿 can po-
tentially cause performance degradation. This is akin to label noise
problem and, to achieve robustness to such noise, we have tested a
variation of AT replacing the categorical cross entropy (CCE) loss
for the ASR hypothesis with a Q-loss [20], a generalization of CCE
and the mean-absolute error (MAE) losses, that allows controlling
noise-robustness properties of a loss. Formally:

L𝑞 (𝑦𝑡𝑟𝑢𝑒 , 𝑦𝑎𝑠𝑟 ) = 𝑦𝑡𝑟𝑢𝑒
(1 − 𝑦

𝑞
𝑎𝑠𝑟 )

𝑞
(1)

parameter 𝑞 ∈ [0, 1], which controls the balance between noise-
resistant MAE (achieved when 𝑞 = 1) behaviour and CCE (approxi-
mated as 𝑞 → 0), can be set depending on the ASR confidence score
(𝑐𝑎𝑠𝑟 ) like so: 𝑞 = (1 − 𝑐𝑎𝑠𝑟 )𝑞

′
, we refer to this variation as Adaptive

Q-loss.

Just like DA, Adversarial Training does not degrade inference
performance and is applicable to a wide range of statistical mod-
els in a plug-and-play fashion due to being agnostic to the model
structure. However, some modification of the model and the training
workflow were required to adopt AT making it slightly harder to pro-
ductize compared to DA. Similarly to DA, AT does not significantly
affect training time, however, we did observe some performance
degradation due to required realignment of transcriptions and ASRs
during the computation of the loss. Note that in all cases the ASR
confidence score is only used during the training. As the ASR com-
ponent updates, confidence score distributions can change as well
potentially making the ASR confidence score an unreliable feature.

Finally, Confidence-Aware Layer (CA) is simple modification
aimed at exploiting utterance-level ASR confidence score (𝑐𝑎𝑠𝑟 ) dur-
ing training and optionally during inference. Figure 1 provides an
overview of the proposed approach. CA is applied to an existing
layer in a neural network (in picture – a regular fully-connected
layer with ReLU activation function), duplicating target layer 𝑛
times forming "buckets", each corresponding to the specific 𝑐𝑎𝑠𝑟
threshold. Then, during the forward pass only the buckets that corre-
spond to thresholds that are lower than the input 𝑐𝑎𝑠𝑟 are activated.
The resulting outputs are pooled using either maximum, average
or attention. Note that with this formulation each bucket receives
all available transcripts (which have 𝑐𝑎𝑠𝑟 = 1.0) and progressively
more noisy ASR hypotheses as threshold is reduced. Pooling such
buckets create an ensemble effect similar to pooling multiple data-
augmented models with different amounts of ASR hypotheses added
into the training set. Threshold values and the number of buckets
can be varied: we used 5 and 10 buckets, selecting either uniformly
distributed threshold values or split to achieve roughly the same
number of ASR hypotheses for each resulting score interval. Such
technique can be applied to any layer or groups of layers in the
network, however, when applied to a fully-connected layer, a very
efficient implementation is possible allowing computing all bucket’s
transformations in a single matrix operation, making CA equivalent
to a single wider layer. CA can be used without a confidence score
during inference by activating all buckets together, avoiding adding
the runtime dependency on 𝑐𝑎𝑠𝑟 .

4 EXPERIMENTAL SETTING
In this section, we describe the datasets and metrics we used in our
experiments as well as define domain classification models that were
used as targets for our robustness approaches. All experiments were
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done on our internal data and designed to be as close to produc-
tion pipeline as possible to reflect real challenges that arise from
upstream ASR errors in a large-scale NLU. Following evaluation
criteria defined above, we evaluate both on the human-annotated
transcriptions and on the ASR 1-best hypotheses aiming to balance
model generalization with robustness to a specific ASR input distri-
bution.

4.1 ASR hypotheses
In our experiments we use ASR hypotheses and the associated
utterance-level confidence scores to augment the target models. To
showcase model performance, we use two datasets including both
transcriptions and ASR 1-bests: ASR-5M and ASR-9M. The former
includes utterances covering four years and includes 5.5M utter-
ances. The latter represents utterances covering a one year period
after ASR-5M, has 9M samples and has significantly lower word
error rate in its ASR hypotheses.

To perform distribution shift analysis in the later stages of our
experiments we have produced two additional datasets: ASR-19a
and ASR-19b, representing utterances coming from two fixed pro-
duction ASR engine releases roughly half a year apart. ASR-19a+b
is a combination of the two.

In production NLU systems lots of synthetic textual data is often
used to assist in development of new features and for such utterances
we would not have the corresponding ASR hypotheses. In our case,
the datasets described above cover roughly a third of the training set
depending on a domain and training setup. To mitigate this issue, we
employ a recent text-level technique for simulating ASR errors [4]
to produce ASR hypotheses for synthetic utterances mimicking real
error distribution and word error rate. This procedure completes
the augmentation of the training set yielding the ASR-ALL dataset
containing 29M samples.

4.2 Metrics
To measure the overall NLU performance we use Semantic Error
Rate (SEMER) defined as follows:

SEMER =
𝑁errors

𝑁reference slots
=
𝑁𝑆 + 𝑁𝐼 + 𝑁𝐷

𝑁𝑆 + 𝑁𝐷 + 𝑁𝐶

, (2)

where 𝑁𝑆 , 𝑁𝐼 , 𝑁𝐷 and 𝑁𝐶 are the number of substitution, insertion,
deletion errors and the correct slots respectively. This metric is simi-
lar to Slot Error Rate (SER) employed in information extraction [10].
When assessing the DC component performance separately, we use
per-domain error rate (fDCER) defined as 1 − 𝐹1. To aggregate the
performance across all domains, we calculate DC error rate defined
as the corresponding weighted average: 1 − 𝐹1𝑚𝑎𝑐𝑟𝑜 .

4.3 Models
We employ five different models of increasing complexity to evaluate
robustness approaches. In our experiments, DC models are binary
classifiers for each individual domain. Domain prediction is then
acquired in a one-vs-all fashion.

BOW uses a simple logistic regression on top of sparse vector
comprised of unigram, bigram and trigram features and serves as
the simplest model in our tests. FFNN is a shallow neural model
using fastText [1] embeddings as input followed by two layers
of size 256 and ReLU activation functions. An Ensemble of these

Table 1: Relative change in SEMER when DA is applied to each
of the models. Performance on transcripts and ASR 1-bests
is reported using ASR-5M and ASR-9M datasets respectively.
Lower the better.

Model
ASR-5M (SEMER) ASR-9M (SEMER)

Transcripts ASR Transcripts ASR

BOW +14.05% -3.94% +0.73% -3.00%
FFNN +2.52% -4.98% -0.75% -4.14%
Ensemble +6.34% -5.19% -0.29% -3.75%
LSTM +0.09% -6.37% – –
LSTMCNN -0.58% -7.53% -0.29% -3.44%

Table 2: Performances (fDCER and SEMER) of the proposed
approaches on transcripts and ASR 1-bests compared to Data
Augmentation (DA) using ASR-ALL dataset. AT parameters:
𝛼 = 0.3 and 𝛾 = 1. CA uses uniform split on confidence score.
Lower the better.

Approach
fDCER SEMER

Transcripts ASR Transcripts ASR

DA – – – –
AT -0.56% -0.78% -0.50% -0.35%
CA -3.91% -1.95% -1.41% -0.76%
DA+AT+CA -4.75% -3.70% -1.81% -0.81%

two classifiers is used combining the BOW and embedding-based
features in a single network.

The forth system, LSTM, has two bi-directional LSTM layers with
hidden state of size 256. Finally, we employ LSTMCNN, inspired by
recent sequence tagging approach [9], as the most complex model
in our tests. LSTMCNN exploit both character-level and word-level
information via the combination of convolutional and recurrent lay-
ers. First, character embeddings (of size 16) are aggregated into
word-level representations using a convolutional layer (with hidden
state of size 32). Then, they are concatenated with an additional
word vector and fed to two Variational LSTM layers (with hidden
state of size 768).

5 EVALUATION
To assess the impact of the proposed robustness approaches we
evaluate our models both on clean human-annotated transcripts and
on the ASR 1-best hypotheses. Ideally, we would want to show an
improvement on ASR hypotheses while maintaining performance
on transcripts as a proxy measure for generalization allowing our
models to show reasonable performance without the mandatory
retraining as the ASR model updates.

Firstly, we evaluate Data Augmentation (DA) on models in-
troduced above on datasets covering two time periods. Then, we
compare Data Augmentation against Adversarial Training and the
Confidence-Aware Layer approaches. Finally, we dive deep into
practical considerations of applying such robustness techniques by
(i) investigating the performance on different NLU domains, (ii)
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Table 3: Data Augmentation performance (fDCER) against the baseline (non-augmented model) in the presence of the error distri-
bution drift for different domains. Same ASR release as in ASR-19b is used for ASR evaluation. Relative improvements against the
baseline are reported. Lower the better.

Approach
Across 3 domains Global Knowledge Shopping

Trans ASR Trans ASR Trans ASR Trans ASR

Baseline – – – – – – – –
DA (ASR-19a) -0.04% -1.96% -0.24% -1.51% -1.56% -2.28% -2.33% -2.39%
DA (ASR-19b) -0.57% -2.78% -0.39% -2.39% -0.73% -3.00% -1.59% -3.70%
DA (ASR-19b, 𝑐𝑎𝑠𝑟 > 0.2) -1.33% -2.81% -0.60% -2.60% -2.97% -3.37% -2.29% -3.25%
DA (ASR-19a+b) +1.00% -1.81% +1.99% -1.60% +3.57% -1.51% -0.18% -4.92%

studying the effect of ASR error distribution drift on different ASR
hypothesis update strategies.

5.1 Data Augmentation
To evaluate Data Augmentation approach, we setup a set of con-
trolled experiments assessing its impact on the NLU performance us-
ing different DC models. IC and NER models are left fixed through-
out our experiments, always making their predictions based on clean
transcripts for each utterance: this way in this experiment we effec-
tively consider IC and NER to be perfectly robust to ASR errors
to further highlight the DC performance. To showcase the effect
of overtime improvements in ASR and the training set design we
include evaluation results for two disjoint time periods: ASR-5M
and ASR-9M (Table 1).

In ASR-5M setting, as the models are getting more sophisticated,
SEMER improves in absolute terms but the gap stays the same.
When Data Augmentation is employed, all models are exhibiting
significant improvements ranging from 4% to 7.5% SEMER on ASR
1-best. However, performance on transcripts is a different story: less
sophisticated models (BOW, FFNN and Ensemble) there show sig-
nificant performance degradation hinting at such models’ limited
ability to generalize. LSTMCNN, being the most complex model in
our testing, was able to benefit the most from the Data Augmentation
yielding 7.53% improvement on ASR 1-bests and 0.58% improve-
ment on transcripts. Evaluation for the ASR-9M setting paints a
similar picture: Data Augmentation was able to outperform base-
lines across the board both on transcripts and ASR 1-bests. Smaller
improvements can be attributed to lower word error rate for ASRs in
this dataset.

For the remainder of the paper LSTMCNN is adopted as a baseline
for robustness modifications.

5.2 Advanced approaches
To evaluate the techniques described in Section 3, we employ the
ASR-ALL dataset to augment the training set and use the same test
sets as for ASR-9M for testing. Here we report two sets of results:
the overall SEMER impact across the NLU stack and the fDCER
numbers to isolate impact on just the DC component. Differently
from the previous experiment, IC and NER components will also
receive ASR hypotheses as input. This means that even if DC pre-
diction is correct, the overall performance can still suffer in case the
downstream task (IC or NER) is not able to recover from the ASR

error giving us a complete picture on the effect of our modifications
on the overall NLU stack.

As can be seen in Table 2, each of the approaches provide addi-
tional performance benefits on top of the Data Augmentation with
the combination of all techniques exhibiting the best performance.
Less pronounced SEMER improvements is due to IC and NER
dampening the overall NLU performance. Q-loss was expected to
perform well, however, in our experiments we did not observe sta-
tistically significant improvements (𝑞 = {0.1, 0.01} both in constant
and adaptive settings). For CA, choice of thresholds significantly
affected per-domain performance. In terms of pooling strategy, av-
erage worked the best, while attention showed overall performance
degradation.

5.3 Distribution drift analysis
Finally, in Table 3 we study how Data Augmentation performs
for different domains in presence of error distribution drift due
to the ASR component updates. Specifically, we used the test set
with ASR hypotheses coming from the same ASR release as the
ASR-19b dataset, while the training set was augmented with either
"old" (ASR-19a) or "new" (ASR-19b) data or a combination of
the two. In almost all cases, ASR augmentations allowed for im-
proved performance as evaluated on ASR. Only the old hypotheses
(ASR-19a) have caused overall degradation on ASR even though
performance improvements on the three selected domains were ob-
served. Due to this, we recommend updating ASR hypotheses peri-
odically as practical. On transcripts, the combination of two ASR
releases (ASR-19a+b) have shown degradation, warning about po-
tential issues when combining different error distributions. Filtering
out noisy ASR hypotheses (𝑐𝑎𝑠𝑟 > 0.2) yielded much greater stabil-
ity on transcripts without loss of ASR performance. This behaviour
persisted when we evaluated across all domains beyond the three
reported — -1.11% improvement on transcriptions and -2.81% on
ASR hypotheses.

6 CONCLUSIONS
In this paper we tackle a problem of NLU model robustness to
upstream ASR errors in a large-scale decoupled SLU system. To
this end, we tested three techniques: Data Augmentation, Adver-
sarial Training and Confidence-Aware Layer. These techniques are
designed to be scalable, i.e. without major training and inference
penalties and applicable to a wide range of machine learning models.
We tested these approaches in different scenarios, such as, ASR error
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distribution drift, usage changes as reflected in NLU training and
test sets across different years and different recipient models. While
the results differ significantly from one scenario to another changing
the expected benefit depending on the quality of ASR engine and
the base model, in most cases we report meaningful performance im-
provements both as evaluated on ASR hypotheses and on annotated
transcripts. These results demonstrate that for sufficiently complex
model robustness to ASR errors is achievable without overfitting
to a particular ASR error distribution. However, as the ASR engine
updates, periodic update of the ASR hypotheses to mitigate the effect
of the distribution drift is becoming more important.

In future, we will continue experimenting with other techniques
applicable to large-scale SLU systems as well as covering the rest of
the NLU components.
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