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ABSTRACT
Query rewriting (QR) is an increasingly important technique for
reducing user friction in a conversational AI system. User friction
is caused by various reasons, including errors in automatic speech
recognition (ASR), natural language understanding (NLU), entity
resolution (ER) component, or users’ slip of the tongue. In this work,
we propose a search-based self-learning QR framework: User Feed-
back Search based Query Rewrite system (UFS-QR), which focuses
on automatic reduction of user friction for large scale conversa-
tional AI agents. The proposed search engine, operating on both
global user and individual user level, leverages semantic embedding,
NLU output, query popularity and estimated friction statistics into
the retrieval and ranking process. In order to construct the index
and train the retrieval/ranking models, we adopt a self-learning
based method by utilizing implicit feedback, learned from users’
historical interactions. We demonstrate the effectiveness of the UFS-
QR system, trained without any annotated data, through offline
and online A/B experiment on Amazon Alexa user traffic. To the
best of our knowledge, this is the first deployed self-learning and
search-based QR system for the general task of automatic friction
reduction in conversational AI.
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1 INTRODUCTION
With the increased popularity of virtual assistant agents such as
Alexa, Cortana and Siri, millions of users interact with spoken
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dialogue systems on daily basis. Unavoidable, some interactions
result in friction. There are mainly two types of errors that lead to
friction. The first type is system error, which refers to the errors
accumulated throughout the model pipeline, including Automatic
Speech Recognition (ASR), Natural Language Understanding (NLU),
dialogue Management (DM), etc. For example, an ASR error can
lead to a wrong recognition “play maj dragons” instead of user’s
intended “play imagine dragons”. The second type is user ambiguity,
such as user’s slip of the tongue or using abridged language while
making the query. Once there is a friction, it often requires longer
engagement with the user to clarify the query and may lead to
possible abandonment of the task. Query rewrite (QR) aims to
automaticallymap a user query to another form, so that the dialogue
system can be more robust.

Previous efforts for QR include a spelling correction model for
ASR [8], followed by an embedding based method relying on human
annotated data [11]. Leveraging user engagement signals into the
NLU model training [15] was explored as well. These methods
focused on reducing the errors in a specific component such as
ASR or NLU. Thus, they often lack the flexibility or generalization
ability to capture various errors originated from dialogue system
pipeline or the user.

In this paper, we present User Feedback Search based Query
Rewrite (UFS-QR) system. We introduce a search component inside
the conversational AI agent to automatically resolve different types
of system errors by leveraging users’ past interaction history. Doc-
uments are constructed using past interactions between the users
and the agent. Specifically, we introduce a) a global layer where
the documents are constructed by aggregating all users’ historical
interactions and b) a personalization layer where the documents are
constructed using individual user’s historical interactions. This is to
reflect the nature of friction; while some frictions occur globally for
many users (e.g. “tooth or dare” as a mis-cognized query of “truth
or dare”), it is also often expected to provide a personalized service
to correctly fulfill each individual user’s request. For example, for a
query “play imagine”, certain users may refer to the song by the
artist John Lennon, while others meant the artist Ariana Grande.
Figure 1 shows the overview of UFS-QR system. Each global and
personalized layer utilizes separated indexes, followed by separated
retrieval and ranking components. Rewrites from each layer are
arbitrated and the final top 1 rewrite is used in the downstream
system.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: System overview of the UFS-QR system

Figure 2: Example of the global/personalized UFS-QR.

UFS-QR is a self-learning system. Training data for our system
does not require human annotation, and are obtained using users’
implicit feedback. The implicit feedback data is collected through
predefined heuristics to utilize user’s own reformulation of queries.
For example, when ASR recognizes a user’s query with an error,
as “play ambient mean”, this will lead to friction, with a response
from the agent, “Sorry, I couldn’t find ambient mean”. Some users
may abandon the task, while a few users may continue trying by
enunciating. When the utterance is correctly recognized (“play
envy me”), this will lead to the action from the agent, “Here is
Envy Me, by Calboy”. We collect such data to train the models
inside the search system. Beside implicit feedback data, we also
utilize agent response quality metrics from the spoken dialogue
system. Themetrics are generated from rules (e.g. whether the agent
response is “Sorry, I don’t know”) as well as a machine learning
model, which provides an estimated defect prediction for each
interaction [14]. The metrics are incorporated as input features
to the modeling components to impact the search decisions. By
utilizing users’ historical interactions and associated metrics, UFS-
QR is able to correct both system and user errors in a proactive
way without requiring annotation data. Figure 2 shows an example
query and its rewrite through UFS-QR.

2 RELATEDWORK
Query rewriting in web search refers to the process of reformulating
an original input query to a new query, aiming to achieve better
search results. It is a critical component in modern search engines
[6, 9, 19, 24]. Motivated by its success, many voice search systems
utilize this component to correct ASR related errors [8, 23, 25].
However, there are unique challenges for adopting QR in a large
scale spoken dialogue system. For example, such system often relies
on voice-user interface to interact with users. As confirmation with
users by introducing an extra turn is typically considered as a
friction, one needs to maintain high precision for the QR system.

In order to automatically estimate the turn-based defect rate in
a voice-based virtual assistant system, different modeling methods
were proposed in the past such as [1, 14, 17, 21]. Such machine
generated metrics play an important role to enable self-learning
and automatically reduce friction in a spoken dialogue system.

Self-learning based friction reduction for a large scale spoken
dialogue system was studied in Ponnusamy et al. [18]. The authors
proposed an absorbing Markov Chain model as a collaborative
filtering mechanism to mine user’s own reformulation patterns.
Once the patterns are discovered, rewrite pairs are extracted. At
runtime, if a query is an exact text match with a friction query, a
rewrite will be triggered using the offline mined pairs. Different
from the Markov chain model, Chen et al. [4] proposed a retrieval
model for QR task, utilizing a query encoder that incorporates
contextual language modeling pre-training. Bonadiman et al. [2] is
another study that focuses on friction reduction using a question
paraphrase retrieval. Similar to Chen et al. [4], authors adopted a
semantic encoder model and proposed a smoothed deep metric loss
to handle the noisy labels. Different from Ponnusamy et al. [18] and
Chen et al. [4], Bonadiman et al. [2] focused on question answering
task.

The difference of UFS-QR system to the Markov chain model is
that our system allows improved flexibility and generalization over
input queries. While the work in Ponnusamy et al. [18] also lever-
aged self-learning, it has a limitation that an input query should be
an exact text match of a previously observed friction utterance. Our
approach offers further expansion on this by utilizing the search
based methods and metrics such as similarity measures. In addition,
compared to Chen et al. [4], we further explore the importance of
a ranking layer leveraging a neural feature extractor and a tree
model.

3 SYSTEM OVERVIEW
Conventional spoken dialogue systems largely contain five compo-
nents: ASR, NLU, DM, a natural language generation (NLG) system,
and a text-to-speech (TTS) system. When a user interacts with
his/her device, the audio is passed through the ASR and transcribed
into a text. We refer this ASR hypothesis as ‘query’. The query is
passed through the NLU component followed by the DM compo-
nent. It extracts the domain, intent, entity information and decides
the action to execute. After that, agent response is decided through
the NLG component. Finally, the TTS generates the audio speech
response, which is sent back to the device to finish one interaction
loop. All metadata associated with each of the above systems are
anonymized and logged asynchronously to an external database.

The proposed UFS-QR system first takes the query as an input
to the search stack. We use the confidence score from the inference
model to decide if the returned rewrite should be triggered or
not. The triggering threshold is decided empirically from a hold
out set. The rewrite is passed to the NLU and the original data
flow is restored. We demonstrate the design in Figure 3. Similar to
Ponnusamy et al. [18], a blocking mechanism to disable any bad
rewrites is deployed together with UFS-QR. For this, we leverage
Z-test to compare the friction rate of original queries and their
rewrites. We adopt a machine learning model proposed in [14] to
automatically estimate the friction rate.
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Figure 3: UFS-QR in spoken dialogue system.

In general, a search system comprises of two stacks operating
sequentially: retrieval layer and ranking layer. From a great amount
of documents, the retrieval layer aims to retrieve a set of relevant
documents with low latency and computational cost. From the re-
trieved documents, ranking layer targets to rank the most desired
documents to the top, often leveraging more complex algorithms
and models. Similarly, the UFS-QR system contains: a) index, con-
structed from an offline process, b) retrieval layer, that performs
approximate nearest neighbor search, c) ranking layer, which ranks
the rewrite candidates and returns the top 1 rewrite as the final
rewrite.

4 UFS-QR INDEX
4.1 Global Index
Global index provides rewrite candidates extracted from all user
interactions for the modeling components (retrieval and ranking).
Our global index is generated from aggregated, anonymized histor-
ical interactions between the users and the virtual assistant agent
within a period of time (e.g. 30 days).

NLUhypothesis based document The document in the global
index is constructed using NLU hypothesis information. Using NLU
hypothesis information, we aim to represent a group of queries
sharing a similar goal in a dialogue system. NLU hypothesis is
generated from the NLU component in the spoken dialogue system,
and can be represented in the following format “domain | intent |
slot_type:slot_value”. For example, given a query “play bad blood
by taylor swift”, we have an NLU hypothesis of “Music | PlayMusic |
SongName:bad blood | ArtistName:taylor swift”. In each document,
we list all queries that lead to the same NLU hypothesis, gathered
from anonymized user interaction data. As we do not rely on any
human annotation process for the index generation, it is possible
that the NLU hypothesis may contain errors. Compared to the
documents constructed with query information only [2], this design
offers an advantage to leverage both head and tail queries that
represent the same goal and to be more robust to noise.

Friction information Our index incorporates historical fric-
tion rate of each query, obtained from IQ-Net, a DNN model that
predicts interaction-level dialogue quality [14] and rule-based de-
fect prediction, e.g. agent response starts with “sorry”. Each query
has information on the total impression (referred as impression, to-
tal occurrences of the query within a period of time) and the defect
impression (referred as defect, total occurrences of the query when

the given metric model classifies it as friction). The occurrence is
accumulated from all users.

Combine existing rewrites We further expand the design to
include two types of documents. The first type isASR, wherewe take
the NLU hypothesis of the given ASR 1-best. The second type isAUS
(Alternative Utterance Service). AUS rewrites are obtained from
hand-crafted rules and following previous approaches [18]. While
AUS rewrites operate in a simple text match form, our purpose is to
further generalize on different queries by incorporating them into
the index. For example, given a query and existing AUS rewrite
pair of “play the alphabet song” - “play the abc song”, our goal is to
transform other variances of the query (e.g. “do alphabet song”) into
the rewrite. Despite the query is not an exact match of previously
observed friction query, UFS-QR retrieval layer is able to retrieve
the most relevant rewrite candidates from the index. We list the
original queries under each document and use a suffix (AUS or ASR)
for the NLU hypothesis. Figure 4 provides examples.

We generate the global index from one month of all historical in-
teractions and apply impression based pruning (a cut-off threshold)
to remove noise.

4.2 Personalized Index
Personalized index follows the similar format of the global UFS-
QR index shown in Figure 4, but is built for each user, leveraging
individual interaction history. We leverage the impression and defect
information, from both global and personalized level. For example,
a query “turn on the moon light” may result in a successful user
experience for the user who has a lamp named “themoon”. However,
for other users, this utterance might be user’s slip of the tongue for
“moonlight sonata”, leading to unsuccessful user experience.

Selecting utterances by user-level impression and defect, per-
sonalized index consists of successful queries spoken by the user1
within a recent time period (i.e. 30 days). In general, we observe
more correction opportunities when utilizing a longer time period
for index building (e.g. 90 days). In order to balance the runtime
latency constraints, index storage size as well as the opportunity
size, we choose 30 days for the time period for personalized index.
Compared to the global index, the personalized index covers more
utterances from the tail distribution. In order to reflect recency
and users’ potential preference change, we update this index in a
regular cadence (i.e. daily). To better define the search space and
consider runtime aspects, we limit the personalized index size, by
selecting top 𝑙 history utterances based on impression and recency.

5 RETRIEVAL LAYER
We frame the problem in retrieval layer as described in Henderson
et al. [10]. Let 𝑥 be the input query and 𝑦 the candidate rewrite. As
shown in Eq. 1, joint probability P(𝑥,𝑦) is represented by a neural
network scoring function 𝑆 (𝑥,𝑦).

P(𝑦 |𝑥) = P(𝑥,𝑦)∑
𝑘 P(𝑥,𝑦𝑘 )

, 𝑆 (𝑥,𝑦) = cos (h, r) (1)

In order to support a large number of indexed rewrite candidates,
we focus on a system based on query embedding [4] and select the
most relevant candidates. A neural encoder learns to capture latent

1All user information was in an anonymized format.
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Figure 4: Simulated examples of documents in the index.

Figure 5: Multi-model architecture in retrieval layer.

syntactic and semantic information for the query and the rewrite
candidates. The final similarity comparison is conducted afterwards.
Scoring function is shown in Eq. 1, where 𝑐𝑜𝑠 represents cosine
distance. h is the embedding of 𝑥 and r is the embedding of 𝑦,
generated by passing the input 𝑥 or 𝑦 through the neural encoder
respectively. The neural encoder is trained so that the query’s
embedding is close to its corresponding rewrite in the projected
space. While the encoder can be any type of sequence-to-vector
transformations, we considered a DNN-based encoder [12] and a
CNN-based one [22] for run-time efficiency. During training, given
pairs of (𝑥,𝑦), we calculate P(𝑦 |𝑥) as follows:

P (𝑦 |𝑥) ≈ exp {𝑆 (𝑥,𝑦)}∑
�̃�∈𝐾

exp {𝑆 (𝑥,𝑦𝑘 )} + exp
{
𝑆 (𝑥,𝑦𝑘_𝐵𝑀25)

} , (2)

Ideally, 𝐾 should be all rewrite candidates. In this paper, we
construct them from each mini-batch for training efficiency and
use cross entropy as the loss function. Another key component is
the k-Nearest Neighbour (kNN) index for a fast top 𝐾 retrieval2.
Prior to the inference time, all rewrite candidates are encoded and

2We use FAISS for efficient retrieval [13].

added to the FAISS index. During the inference time, each query is
encoded and FAISS returns the top 𝐾 relevant rewrites.

We adopt a multi-model architecture (Figure 5), to promote the
diversity of the retrieved candidates. A single query is passed to
two different encoders. Each DNN and CNN encoder retrieves top
𝐾 rewrites separately. The candidates are first sorted separately and
joined in an interleaving way. Starting from the top of the joined
list, we examine the NLU hypothesis of the candidates; candidates
whose NLU hypothesis has been seen before are removed. The pro-
cess stops if we obtain the predefined 𝐾 candidates or we examined
through the interleaved list. This merge/prune process helps to re-
move any redundant candidates from the retrieval layer, improving
the coverage of candidates. Final rewrite candidates are passed to
the ranking layer with their corresponding NLU hypothesis.

In our preliminary experiments, we experimented with utilizing
up to 4 retrieval models with different configurations (e.g. different
input sequences, architecture, etc.) in the retrieval layer, and ob-
served gain in the retrieval performance. Considering the runtime
constraints such as memory footprint and latency, we choose the
aforementioned DNN and CNNmodels as our retrieval models. The
DNN model in the retrieval layer takes character-level trigram as
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input. We use three layers of fully connected MLP with 512 hidden
layer size. The final embedding size for both DNN and CNN is 300.

6 RANKING LAYER
The ranking component takes query 𝑥 , top 𝐾 candidates 𝑌 from the
retrieval layer, and their corresponding NLU hypothesis 𝑌NLU as
input. It has twomain model components, a neural feature extractor
and a Gradient Boosted Decision Tree (GBDT). We choose the
hybrid model architecture for the following considerations: 1) We
want the flexibility of the ranking layer to further incorporate
richer semantic information (e.g. leveraging pre-trained contextual
language embeddings [5, 7]); 2) Model should be easily extended
to incorporate various discrete or continuous features for both
global and personal level; 3) Neural ranking models are typically
sensitive to the training data distributions. We believe fusing the
neural features with other features for the tree model helps the
generalization.

6.1 Neural Feature Extractor
The neural feature extractor is a deep learning model that provides
hidden embedding as features for GBDT. Given the query text 𝑥 ,
we first pass the sequence of tokens through an encoder and obtain
a sequence of hidden representation h. For the rewrite hypothesis
𝑦NLU, we serialize it into a text sequence. It is passed through the
encoder the same way as the query text. We obtain r, the rewrite
hidden representation.

In this paper, we use MLP for the encoder due to the limited la-
tency budget. We obtain the hidden representations h1, h2, h3, ..h𝑁
for query and r1, r2, r3, ...r𝑀 for the rewrite hypothesis3. We then
generate a Bag Of Embedding (BOE) for each side as follows:

u =
∑
𝑖

u𝑖 (3)

Note that u can be either query side (h) or rewrite hypothesis
side (r). With the BOE of query (h) and rewrite NLU hypothesis (r),
we conduct single-head cross attention (between query side and
rewrite side), as shown in Figure 6. We generate attention weight of
h1, h2, h3, ..h𝑁 by comparing them with the r. The context vector
is generated by weighted sum of the h1, h2, h3, ..h𝑁 . In this paper,
we use a dot product to generate the attention weights. A context
vector is generated for both query and rewrite side as cℎ and c𝑟 .
The final embedding extracted from either query or rewrite side
is the concatenation of their BOE and context vector. We use the
following transformation and feed this to the final MLP layer that
outputs a ranking score.

score = MLP(fenc), fenc = [h̃; r̃; |h̃ − r̃|; h̃ ⊙ r̃] (4)

h̃ = [h; cℎ] and r̃ = [r; c𝑟 ]. Different from the retrieval model
training, we use margin ranking loss to train the model. Each query
has a positive rewrite and a negative rewrite. The model is trained
to produce a higher ranking score for the positive rewrite, compared
to the negative rewrite. After the model is trained, we take the fenc
in Eq. 4 as the features extracted from the neural model and feed
them to the GBDT models.

3𝑁,𝑀 : token sequence length of query and rewrite NLU hypothesis

6.2 Ranking GBDT model
Besides the features extracted from the neural model, we also extract
a group of conventional IR features. All features are concatenated to
form an input to the GBDT model. The features can be categorized
into mainly three types. Text features capture the text level differ-
ence between the query and rewrite, e.g. edit distance, BLEU score
[16]. Document features provide information at document level
related to the historical interaction of the given NLU hypothesis,
e.g. number of queries within a document, historical friction rate
of the document (both rule-based and machine-learning based).
Query-document features carry information of the relevance
of the query for the given document. Table 1 shows some of the
features we used in this work4.

For example, given the example document “Music | AddTo-
PlayQueueIntent | ASR” in Figure 4, we extract “Number of Queries”
to 3. As “Weighted Number of Queries”, for “impression”, we have
79 + 27 + 119 = 225. For “defect”, we have 10 + 5 + 10 = 25. By
differentiating “impression” and “defect”, we allow the model to
rank the hypothesis that helps to reduce user friction to the top. In
total we derive a set of IR feature with dimension of 250.

Among many other loss function options, e.g. LambdaMart or
LambdaRank [3], we use logistic regression to offer a calibrated
score between [0, 1]. Our offline experiment showed that logistic
regression model performance is comparable to the LambdaMart
model’s performance, especially when there is a large amount of
training data available. We use the calibrated score to indicate the
model’s confidence and not to trigger the UFS-QR’s rewrite when
the model is not confident.

For the neural model in ranking layer, we first use a two-layer
DNN with [500, 200] hidden size before applying the attention.
We use a mini-batch size of 512 and set a maximum utterance
length of 15 words. We use the Adam optimizer and set the training
epoch as 20 with early stopping. For all neural models, we use an
initial learning rate of 0.001. All experiments are performed using
AllenNLP5 on Nvidia V100 GPUs. We use Xgboost6 to train the
GBDT model, where we set the max tree depth to be 10, learning
rate to be 0.2 and the number of trees to be 600.

7 REWRITE SELECTION AND ARBITRATION
For global UFS-QR, we take the top 1 returned rewrite from the
ranking layer and use this for downstream components (e.g. NLU,
ER) in the dialogue system.

In personalized UFS-QR, given user’s input query, we aim to
find the most similar utterance from the personalized index. As
described in Section 4, personalized index contains successful user
queries from each user’s history. Currently, we leverage the re-
trieval models described in Section 5, and obtain the embeddings
for input query and each utterance in user’s index. The scoring
function follows Eq. 1, where we check the similarity between the
embedding for user’s input (e.g. “turn on the moon light”) and each
utterance in their index (e.g. “repeat this song”, “play the moonlight
sonata”, etc.). Current mechanism then selects the top 1 rewrite by

4We use 𝑙𝑜𝑔 to smooth the raw count for “impression” and “defect” when calculating
the weighted features
5https://github.com/allenai/allennlp
6https://xgboost.readthedocs.io/en/latest/
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Figure 6: Model architecture for neural feature extractor of ranking layer

Table 1: Examples of IR features used. For all features that require “weight”, i.e. “weighted number of tokens”, “𝑛-gram prob-
ability”, we generate two sets of weighted features by utilizing the impression and defect respectively.

number of queries number of queries in a document
weighted number of queries weighted sum number of queries in a document
number of tokens number of words in a document
weighted number of tokens weighted number of words in a document
TF-IDF The TF multiplied by IDF for the given word.
BM25 Okapi BM25 [20]
𝑛-gram probability The query probability for an 𝑛-gram model constructed using weighted queries in a document

this score and provides the rewrite when the score exceeds a prede-
fined threshold 𝜃 . Similar to global UFS-QR, we consider adding a
ranking component for personalization, utilizing personalized level
impression, defect, and further contexts from the user.

When both global and personalized components return a rewrite
candidate, we prioritize the results from personalization layer over
global layer in order to support any possible personalization of QR.

8 EXPERIMENTAL SETUP
8.1 Training Data
Retrieval models Training data is obtained utilizing largely two
heuristics. In the first rule, we examine any two consecutive queries
from each user and find the queries that fulfill the following criteria:
a) The two consecutive queries were spoken within 𝑡 seconds in
time window. b) The two consecutive queries have minimum edit
distance shorter than 𝑑 . c) Utilizing the friction detection model
[14], the first query led to friction, while the second was successful.
Using this rule, we aim to harvest the query-rephrase pairs from
users where they repeated or rephrased the friction query. In the

second rule, we utilize ASR 𝑛-best: a) first query’s ASR 𝑛-best (𝑛
> 1) is the second query’s ASR 1-best, b) same as the first rule, we
maintain the rule on time window 𝑡 and the friction condition on
the two consecutive queries. This rule was motivated from our
observation that even when there is an ASR error on the ASR 1-
best, the correct recognition can often be found in their ASR 𝑛-best
list. By considering the following query’s ASR 1-best, we find the
rephrase pairs where the first query was likely an ASR error of the
second query. After careful tweaking, we chose 𝑡 = 45, 𝑑 = 5 to
reduce noise and maintain the opportunity. The resulting 40million
pairs are used to train models for retrieval layer. The followings
are examples from the training data:

• play ambient mean→ play envy me (rewrite corrects an ASR
error)

• play blues radio news → play blue news radio (rewrite rear-
ranges words for better clarity)

Ranking models We utilize the above-mentioned 40 million
pairs of training data, and obtain the positive and negative rewrites
from the retrieval models. If NLU hypothesis of the reference rewrite
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matches the NLU hypothesis of a proposed rewrite candidate, we
consider this as a positive example, and otherwise as a negative
example. For example, given a query “voice room light off”, top 𝐾
retrievals from the retrieval models contain a correct rewrite “boys
room light off”, as well as an incorrect rewrite “gold room light
off”. The correct rewrite is assigned as a positive example of the
query, while the incorrect rewrite is assigned as a negative example.
We then randomly sample about 20 million total triplet “<query,
positive_sample, negative_sample>” in order to train the ranking
models.

8.2 Offline Evaluation
Creation of test data follows the similar procedure for training set.
Test cases are randomly sampled from a time period immediately
following the period from which the training data was drawn. We
select the true rephrase pairs among them, identified by the hu-
man annotators. In order to reflect runtime impact, we select test
cases that the baseline model (i.e. Markov chain based model [18])
cannot provide a rewrite for. As the Markov chain based model uti-
lizes collaborative filtering, it often cannot capture rewrite patterns
of low impression. The resulted evaluation set contains 16k test
cases. We compare the global UFS-QR system performance with the
Deep Structured Semantic Model (DSSM) in their default configura-
tion [12]. For the personalized UFS-QR system, we select potential
rephrase pairs that fulfill the following conditions: a) for the two
consecutive utterances, the second turn utterance 𝑦 is followed
by the first turn utterance 𝑥 within a short time window (e.g. 30
seconds) and their minimum edit distance is below an empirically
chosen threshold, b) we can observe𝑦 in the user’s history with suc-
cessful interaction indicated by the friction estimated model. These
samples are further annotated by human annotators to only select
the true rephrases. After each test case is annotated by three human
annotators, we have 6k test cases with the annotator agreement.

Evaluation is performed on the NLU hypothesis level, using
standard information retrieval metrics: Precision@𝑁 (P@𝑁 ). The
P@𝑁 measures if at least one rewrite in the first 𝑁 candidates has
a NLU hypothesis matched the 𝑦’s.

8.3 Online Evaluation for Deployment
Ensuring the performance of a runtime system for general traffic
has a great importance. We launch the UFS-QR (both global and
personalized, separately) in production in an A/B testing setup and
measure the defect rate decrease in live traffic.

9 RESULTS
9.1 Offline Evaluation
In this paper, performance is reported in terms of relative improve-
ment over baseline7. Table 2 shows offline experimental results
from global UFS-QR system. As described, DSSM based approach
is shown as the baseline, whose performance will be reported as
0%. The DSSM baseline obtains an absolute p@10 around 40% for
the test set. By introducing the retrieval layer with multi-model
design in UFS-QR, we see a relative improvement of 15.1% at p@1
7Given the precision of baseline system, we calculate the relative precision performance
changes and report this in %. It is calculated as 100 × (𝑝𝑐 − 𝑝𝑏 )/𝑝𝑏 − 100, where 𝑝𝑏
is the baseline precision, and 𝑝𝑐 denotes any comparing system’s precision.

Table 2: Summary of global UFS-QR experiment results.

p@1 p@10
baseline DSSM 0% 0%
UFS-QR Retrieval CNN + DNN +15.1% +25.3%
+ UFS-QR Ranking Neural Model +36.2% N/A
+ UFS-QR Ranking GBDT +142.2% N/A

Table 3: Ranking layer performance given correct retrievals

p@1
Ranking Neural Model 0%
Ranking Neural Model: with correct retrieval +100.7%
Ranking GBDT 0%
Ranking GBDT: with correct retrieval +166.6%

Table 4: UFS-QR performance on personalized test case

p@1
global UFS-QR 0%
personalized UFS-QR +64.1%

and 25.3% at p@10. By feeding the retrieved candidates into the
ranking neural model, we see a relative improvement of 36.2%. Fi-
nally, when we use the full UFS-QR system, feeding the feature
extracted by the ranking neural model into the GBDT model, we
achieve a significant relative improvement on p@1 of 142.2%. This
significant boosted performance from GBDT comes from the com-
bination of pure semantic comparison captured by the ranking
neural models and the feedback signal carried in the designed IR
features. For example, for a request “what’s the weather forecast
for papa michigan”, the correct rewrite from the index is in a syn-
tactically distant form, “weather report for paw paw michigan”.
While retrieval layer retrieved this rewrite candidate as one of top
10 retrievals, other candidates such as “what’s the weather forecast
for portage michigan” obtained a higher score from the retrieval
layer. Ranking layer, utilizing document level features including
NLU hypothesis information, could successfully rank the correct
rewrite to final rewrite. Further analysis showed that the following
features are one of the most important features for the ranking
performance: L2 neural features, weighted defect score, weighted
query impression, 𝑛-gram defect, 𝑛-gram impression, TF-IDF.

Additionally, we investigate further into the ranking layer per-
formance, by passing correct retrieval candidates to the ranking
layer. Results are shown in Table 3. We take the ranking layer per-
formance from Table 2 as our baseline, in order to showcase how
much improvement the ranking layer can achieve given the perfect
retrieval results. In this case, we see a relative improvement in p@1
of +100.7% and +166.6% for the ranking neural model and the GBDT
respectively. This demonstrates the importance of improving on
the p@n from the retrieval layer, which we leave as future work. In
production system, we carefully tweak the trigger threshold within
UFS-QR to avoid bad rewrites.

Table 4 summarizes p@1 performance on the personalized test
set. We take global UFS-QR system as the baseline here, whose p@1
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Table 5: Examples from global and personalizated UFS-QR

Query Global rewrite from UFS-QR
Tooth or dare Let’s play truth or dare
Do I have any rain sounds Play heavy rain sounds
New master TV Mute master TV
Where is the nearest floor in decor Where is the nearest floor and decor
Play hit or love it Play hate it or love it
Query Personalized rewrite from UFS-QR
Turn off the Tasha’s bedroom Turn of Natasha’s bedroom
What’s the temperature in Wilkeson What’s the temperature in Wilkerson
How’s traffic to BW airport How’s traffic to DFW airport
Turn on cam Turn on kim
Play my new five playlist Play my new finds playlist

performance is reported as 0%. Note that the personalized test set
mostly contains utterances from the extreme tail distribution (e.g.
utterances that regard user’s specific device setup). Global UFS-QR
very often does not have any confident rewrites for such test cases.
On personalized test cases, we observed a great difference in trigger
rate, where personalized UFS-QR is triggered 12 times more often
than global UFS-QR. Personalized UFS-QR improves the global UFS-
QR on this test set by relative 64% on p@1, while improving the
trigger rate by around 12 times.We observe that UFS-QR can recover
personalized level information leveraging personalized index as
well as semantic similarity measure, including user’s device name,
playlist name.

Table 5 shows rewrite examples from global and personalized
UFS-QR. From global UFS-QR, we see rewrite patterns where user’s
slip of the tongue (e.g. “tooth or dare”) is recovered into a better-
formulated utterances. It is also noticeable that errors in entities
such as song name andmerchandise name are recovered. Also, some
queries are rewritten to convey user’s requests more clearly (e.g.
rewriting a vague question into an actionable query “play heavy
rain sounds”). From personalized UFS-QR, we see corrections that
leverage individual user’s previous usage. We often see personal-
ized rewrites that recover from errors on user’s device setup. For
example, a query “turn on cam” can be a frequent request globally,
as many users utilize a smart camera device. However, we see that
this is an error for the user who often uses a device called “kim”.
Personalized UFS-QR could successfully recover from this error,
rewriting the query to “turn on kim”. Other rewrite patterns we see
include recovering an error in a weather location for the user as
well as locating a more relevant airport to the user based on user’s
previous usage.

9.2 Online Evaluation
After the offline experiments, we launched global UFS-QR in pro-
duction in an A/B testing setup. We compared the performance of
global UFS-QR system against no UFS-QR rewrites within English
speaking users in the US, for a week in production. In the produc-
tion, as a baseline, we had the QR system based on Ponnusamy
et al. [18]. We observed significant8 reduction of defect rate (13%).
Launch of UFS-QR increased the number of global rewrite by 13.5%8.

8𝑝-value < 0.001

Launching personalized UFS-QR system on top of the global UFS-
QR led to an additional significant defect rate reduction of 4%8.
Compared to having only global UFS-QR, personalized UFS-QR
significantly reduced user rephrases by 4.33%8. Moreover, launch of
personalization layer further improved our sentiment metrics, lead-
ing to 1.46%9 of decrease in dissatisfaction metric. The total number
of rewrites by global UFS-QR and personalized UFS-QR are com-
parable, showing almost 1:1 ratio in production. Once global and
personalized UFS-QR systems were fully launched in production,
the total number of rewrites was increased by 46%.

As a part of production monitoring, we monitor the number of
new, unseen rewrites in production. For example, a rewrite pair
“play watch your hands” to “play wash your hands” can be a newly
occurring rewrite pair, that has never been triggered in the produc-
tion system earlier. We observe that UFS-QR systems introduce new,
unseen rewrites significantly more often than the baseline system
[18]. On a weekly basis, we observe that global UFS-QR introduces
new, unseen rewrites 75% more than the baseline. Personalized
UFS-QR introduces such rewrites 30% more than the baseline.

10 CONCLUSION
In this paper, we introduced a two stage retrieval/rank based query
rewrite system UFS-QR for friction reduction for spoken dialogue
system. We further extend the scope and introduce personalized
UFS-QR, where we build personalized index and provide rewrites
for personalized usage.We demonstrated the UFS-QR has the follow-
ing advantage compared with other previously proposed systems:
it requires no annotation data for model training by leveraging
user interaction data; it provides a generalized rewrite solution
without any constraints on the query text and incorporates users’
interaction history and friction ratio into both index generation
and offline model training; it reduces friction from all sources in the
spoken dialogue system instead of focusing on one component (e.g.
ASR or NLU). Our offline experimental results showed a significant
improvement from UFS-QR over a neural semantic search model.
Online evaluation showed significant friction reduction with a large
scale rewrite traffic volume.

9𝑝-value < 0.023
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