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ABSTRACT

Automatically evaluating large scale dialogue systems’ response
quality is a challenging task in dialogue research. Existing auto-
mated turn-level approaches train supervised models on Interaction
Quality (IQ) labels or annotations provided by experts, which is
costly and time-sensitive. Moreover, the small quantity of anno-
tated data limits the trained model’s ability to generalize to the long
tail and out of domain cases. In this paper, we propose a learning
framework that improves the model’s generalizability by leveraging
various unsupervised data sources available in large-scale conversa-
tional Al systems. We mainly rely on the following three techniques
to improve the performance of dialogue evaluation models: First,
we propose extending the RoOBERTa model to encode multi-turn di-
alogues to capture the temporal differences between different turns.
Second, we add two additional pretraining processes on top of en-
hanced multi-turn RoBERTa to take advantage of large quantity of
existing historical dialogue data through self-supervised training.
Third, we perform fine-tuning on IQ labels in a multi-task learning
setup, leveraging domain-specific information from other tasks. We
show that the above techniques significantly reduce annotated data
requirements. We achieve the same F1 score on IQ prediction task
as our baseline with only 5% of IQ training data and further beat
the baseline by 5.4% absolute F1 score if we use all of the training
data.
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1 INTRODUCTION

Large scale conversational agents like Amazon Alexa, Apple Siri,
and Google Assistant have set a standard for conversational Al
with the ability to integrate seamlessly across a wide range of
functionalities. Such systems are complex in nature with many
sequential components, such as Automatic Speech Recognition
(ASR), Natural Language Understanding (NLU), Dialogue Manager,
and Natural Language Generation. As the scope of these systems
is increasing to cover more scenarios and applications, it becomes
vital to automatically evaluate the response quality of these agents
to estimate user satisfaction. In particular, identifying problematic
responses where the user was left dissatisfied can be useful in
improving dialogue agents over time with data driven learning
[3, 16, 26].

Previous approaches for automated dialogue evaluation can be
classified into Dialogue-level or Turn-level, based on whether we
are evaluating multiple exchanges at once or each exchange (user’s
utterance and agent’s response) individually. The PARADISE (PAR-
Adigm for DIalogue System Evaluation) framework is the most well
known evaluation framework proposed for evaluating dialogue-
level user satisfaction [23]. In PARADISE, a linear regression model
is fitted to predict the dialogue-level user satisfaction for a given set
of manually extracted input features and user ratings. In contrast
to rating the dialogue as a whole, approaches such as Interaction
Quality (IQ) [19] were proposed to capture user satisfaction at
turn level. Here, an SVM model [4] is learned based on the ratings
provided by human annotators, while the input features were auto-
matically extracted based on interaction parameters and emotions.

More recent approaches [1, 2, 11] extend the IQ framework and
use models like Gradient Boosting Decision Tree (GBDT) [6], Recur-
rent Neural Networks (RNN) [17], and Long Short-Term Memory
Networks (LSTM) [18] to encode the dialogue session. However,
in addition to using textual data, these approaches also rely on
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Table 1: Examples of Dialogue Sessions with different turn-
level IQ labels (Unsatisfied = 1, Satisfied = 0)

Timestamp

(in seconds) Dialogue Session 1Q label

[USER] Play hello

r=0 [AGENT] Here’s Hello, by Pop Smoke.
1 1
=4 [USER] Stop
= [AGENT] <null>
2 =0 [USER] Play maj and dragons. 1
[AGENT] Sorry, I can’t find that.
=0 [USER] Play hello 1
[AGENT] Here’s Hello, by Pop Smoke.
3
=6 [USER] Play hello by Adele 0
[AGENT] Here’s hello by Adele
=0 [USER] Play hello 0
[AGENT] Here’s Hello, by Pop Smoke.
4
=60 [USER] Play hello by Adele 0
[AGENT] Here’s hello by Adele
—0 [USER] show me shark videos 1
= [AGENT] Here’s what I found (playing video)
5
play baby shark on amazon prime
=3 [USER] play baby shark i

[AGENT] Here’s Baby Shark , by Pinkfong , on Amazon Music.

input features generated by internal components, such as NLU/ASR
confidence scores and Dialogue Status. These signals introduce
dependencies on internal components and force the model to be
system specific. As a result, our work does not leverage these sig-
nals; instead, we focus on more powerful model architectures that
can capture user satisfaction using the textual and temporal infor-
mation alone.

We hypothesize that user satisfaction can be inferred using ex-
plicit and implicit user/agent behaviors that exist in the dialogue
session. Dialogues 1 and 2 in Table 1 are examples of explicit user
and agent behavior, respectively. In dialogue 1, the user terminated
the request as the agent did not play the right song. In dialogue
2, the agent failed to handle the request due to an error in entity
resolution, caused by ASR error. Dialogues 3 and 4 capture user’s
intention implicitly and highlight the importance of temporal in-
formation. In dialogue 3, the user did not intend to listen to Pop
Smoke and thus immediately interrupted the agent by rephrasing
the original request. However, in dialogue 4, the user listened to
“Hello, by Pop Smoke” for 7 = 60 seconds before issuing the next re-
quest. This arguably leads to the conclusion that the user intended
to listen to Pop Smoke and Adele thereafter. Dialogue 5 shows why
it is important to capture context from other turns. The agent’s
action in the first turn did not satisfy user’s requirement as the user
was looking for Baby Shark specifically.

These examples emphasize the significance of capturing dia-
logue context as precisely as possible, to correctly estimate user
satisfaction. From the perspective of offline dialogue evaluation,
the dialogue context should not only include the previous and the
following turns, but also the temporal differences between different
turns. To this end, we design a novel transformer based dialogue
encoder, so as to utilize its self-attention mechanism [22] across
tokens of different turns of the dialogue, while making the model
aware of the temporal differences between turns. We build on top
of RoBERTa encoder [13] and refer to our model as ROBERTaIQ.
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Another major challenge imposed by automatic dialogue evalua-
tion is collecting large amount of human annotations or IQ labels,
which can be costly and time consuming. Recent advances in pre-
training using self-attention encoder architectures like BERT [5]
and RoBERTa [13] have been commonly used in many NLP appli-
cations. Such models are usually trained on massive general text
corpora like English Wikipedia. However, the underlying difference
of linguistic patterns between general text and dialogues makes
existing pretrained language models less useful in practice. Wu et al.
[24] have successfully shown that pretraining for task-oriented di-
alogues can be more useful than using general pretrained language
models. However, there are only a few related works that leverage
pretraining for automated dialogue evaluation. Liang et al. [10]
learn dialogue feature representation with a self-supervised dia-
logue flow anomaly detection task, while Sinha et al. [20] train text
encoders via noise contrastive estimation (NCE) [8]. Inspired by the
success of domain-adaptive (DAPT) and task-adaptive pretraining
(TAPT) [7, 9], we adopt the multi-stage pretraining process on large
scale historical dialogue data and IQ task training data. Furthermore,
we make our training process more data efficient by following the
Multi-Task DNN learning framework for NLU [12]. We cast our
learning process in a multi-task setting leveraging large amounts
of cross-task data and regularization benefits. When fine-tuning,
we learn to jointly predict turn-wise IQ label, domain and intent.
The domain and intent signals are obtained from a separate NLU
classification system and do not introduce additional annotation
costs.

In summary, we make the following contributions:

e We design a novel transformer based dialogue encoder: RoBER-
TalQ for inferring turn-level user satisfaction in multi-turn
dialogues.

e We show the effectiveness of ROBERTaIQ in capturing dia-
logue context and temporal information across turns by com-
paring it with previous state of the art discourse-structure
aware text encoders.

e We propose a data efficient learning framework to signif-
icantly reduce the amount of annotated data required for
learning RoBERTalQ. We leverage unlabelled historical di-
alogue data for pretraining. We perform fine-tuning in a
multi-task learning setup to further utilize readily available
signals like Domain and Intent. Unlike other works that use
these signals as input features [1, 11], our model uses them
as supervision signals to reduce training data (IQ labels)
requirement.

The rest of the paper is organized as follows. Section 2 reviews
existing work. Section 3 presents baselines and our approach for
automatic dialogue evaluation. Section 4 presents our experimental
results. Section 5 shows different ablation studies. We conclude our
paper in Section 6. Appendices A and B contain hyperparameter
information and case studies, respectively.

2 RELATED WORK

Recent works on evaluation of response quality in dialogue systems
[1, 2, 11] are closely related to our work. While [2] use human engi-
neered NLP features, [1, 11] propose IQ prediction models that use
input features directly from raw dialogue turn contents and system
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metadata (e.g. ASR/NLU scores). However, we see the reliance on
system metadata as a limitation, and design our approach such
that no system metadata is required as input features to the model.
While the above approaches focus on dialogue evaluation in Spoken
Langugage Understanding (SLU) systems, there is another line of
work that focuses more on evaluation of open-domain chit-chat
style dialogues. Lowe et al. [14] proposed a supervised approach
called ADEM to mimic human annotator’s assessment of response
appropriateness, while Tao et al. [21] proposed an unsupervised
method called RUBER. Both of these approaches use RNN based
encoders. However, both ADEM and RUBER metrics result in poor
correlation with human judgements [27]. Zhao et al. [27] propose
RoBERTa-eval, which uses a powerful RoBERTa based text encoder
to represent the dialogue context. Recently, Sinha et al. [20] pro-
pose MaUdE, which uses a BERT based text encoder to encode the
utterances, followed by an RNN to model dialogue transitions. We
adapt MaUdE and RoBERTa-eval to our use-case. We use them as
baselines to analyze their shortcomings and design our dialogue
encoder with enhanced contextual and temporal representations.

3 METHODOLOGY

In this section, we first define the notations and provide the prob-
lem definition. Next, we present the baseline model architectures
adapted to our use-case: MaUdE and RoBERTa-eval. We then share
the details of our proposed architecture: ROBERTaIQ that encodes a
flattened dialogue text sequence and explain how each dialogue ses-
sion is processed before inputting to this model. Next, we introduce
how we obtain the datasets used for experiments, followed with
explanation of the training procedure that involves pretraining and
multi-task fine-tuning.

3.1 Notations and Problem Definition

We consider a dataset D of M multi-turn dialogue sessions, such
that D = {S; }JNL 1> and every session S is an ordered set of N turns:
S = {ti}ﬁ\:’ 1- Here i indicates the index of turn, and each turn ¢;
consists of a pair (Q;, R;), where Q; is the user’s query and R; is
the agent’s response to query Q;. Each turn ¢; also has a timestamp
7; associated with it, which is the time at which Q; was received by
the agent. Any two successive turns have a time gap of less than a
minute. Given a dialogue session S and a reference turn t,.r = t;
for some i € {1,..., N}, the goal of our model is to predict IQscore
of turn ¢, ¢. IQscore = 0 if the agent’s response R ¢ to query Qper
is satisfactory from user’s perspective, and 1 otherwise. We focus
on offline turn-level dialogue evaluation, which means that we have
both previous turns and following turns available at the time of
evaluating t, .

3.2 Baseline models

3.2.1 MaUdE++. MaUdE (Metric for automatic Unreferenced di-
alogue Evaluation) was proposed by Sinha et al. [20] for online
dialogue evaluation. Here, we adapt MaUdE’s Dialogue-structure
aware encoder for offline evaluation, and slightly modify the archi-
tecture such that it can encode other meta information about each
turn, such as domain, intent, timestamp, active screen availability
etc. We use similar metadata features as used by Ling et al. [11].
We refer to this modification as MaUdE++.
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Figure 1: MaUdE++ (baseline model) architecture

As shown in Figure 1, MaUdE++ first computes the encoding
for each turn and then passes the turn encodings through a bidi-
rectional GRU to compute the dialogue session embedding. This
session embedding is concatenated with other features and fed to
the classifier for IQ prediction. Considering a dialogue session S
with n turns: {(Q1, R1), ..., (On, Ry) }, we compute the IQ score as:

fi = RoBERT acs([CLS]; Qi; [SEP]; R;) (1)
ej = (fi; meta;) )
— —
hp,h; = BiGRU (e, ez, ...,€p) (3)
— —
IQscore = O'(W-(eref;hnihl)) (4)

Here, [CLS] refers to a special token prefixed to user query, [SEP]
refers to a special token inserted between the query and response,
“;” denotes the concatenation operator, €; refers to the encoding of
turn ¢;, meta; refers to the concatenated encodings of categorical

and real-valued features of turn t;. }T)n and }: are the final hidden
states of the bidirectional GRU in either direction and e.s refers
to the encoding of the reference turn for which we want to make
the IQ score prediction. To compute the text representation fj, we
use the [CLS] token encoding from the RoBERTa encoder. We start
with a pretrained RoBERTa model and finetune it end-to-end with
gradients coming from IQ classification loss.

3.2.2 RoBERTa-eval. RoBERTa-eval was proposed by Zhao et al.
[27] as a robust dialogue response evaluator. It produces a vector d
given a context ¢ and a response R ¢ and then finally calculates
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Figure 2: RoOBERTaIQ model architecture

its score via a Multilayer Perceptron with a sigmoid function. Con-
sidering a dialogue session S with n turns: {(Q1, R1), ..., (On, Rn) }:

¢ = [[CLS]; Qu; [SEP]; Ry; [SEP]; Q2; [SEPY; ... Qrerl — (5)

d = RoBERTacys(c; [SEP];Rref) 6)

IQscore = o(MLP(d)) (7

Here, c, the dialogue context, is a flattened sequence of user
queries and agent responses from previous turns, including the
query of reference turn, for which we want to predict the IQ score.

Note that a limitation of this model is that it can only encode the
left dialogue context, i.e. turns that happened before Qy. .

3.3 Our approach: ROBERTalIQ

Figure 2 shows the RoBERTaIQ model architecture diagram. Un-
like previous works that rely on textual features and many other
system specific signals [11, 15] which require feature engineering
efforts, ROBERTaIQ relies solely on the textual features, i.e. user’s
utterances and agent’s responses. ROBERTaIQ model is built on top
of RoBERTa-base model with modifications at the input layer. To
differentiate between the utterances and responses, we add two
special tokens to the vocabulary, [USER] and [AGENT] and prefix
them to each utterance and response respectively. By doing this,
we create a single flat sequence for the whole dialogue. We limit
the dialogue length to 512 tokens. Table 2 shows how a dialogue
session is pre-processed.

Temporal difference encoding: In addition to capturing the
text contextual information as shown above, we also capture the
time difference between multiple turns in case of a multi-turn dia-
logue. Capturing the time difference is an important factor for IQ
prediction as users are likely to immediately interrupt the agent if
they do not get the right response. They might even rephrase their

Table 2: Pre-processing of a dialogue session

Timestamp . .
(in seconds) Dialogue Session
—0 [USER] Play fearless.
r= [AGENT] Playing fearless by Pink Floyd.
9 [USER] Stop
= [AGENT] <null>
r=7 [USER] Play fearless by Taylor Swift.
N [AGENT] Here’s featless by Taylor Swift.

Pre-Processed form
[USER] Play fearless [AGENT] Playing fearless by Pink Floyd
[USER] Stop [AGENT] [USER] Play fearless by Taylor Swift
[AGENT] Here’s fearless by Taylor Swift

request or add more information and hope the agent can take the
action they expected in the follow-up turn.

To make the model aware of these temporal differences between
the turns, we first select a reference turn in the dialogue session
and refer to its timestamp as 7, ¢. This turn is selected at random
when pretraining. During fine-tuning, this is the turn for which we
have the IQ label. We then calculate the time difference A; for all
turns with respect to 7,1 Aj = 7; — 7 £, Where 7; is the timestamp
of turn i. A; for all turns are then discretized using equal width
binning. We create 16 bins to represent equal sized intervals in A;’s
range of [—60, 60] seconds and map A; to its respective time bin:
[BIN;]. The corresponding time-bin embeddings are added to each
token of the turn at the input layer of the model, depending on
the turn’s bin, as shown in Figure 2. These embeddings are learned
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from scratch. The number of bins is decided in a way to ensure a
uniform distribution of turns across the bins. We reserve a special
bin: [ BINp] for reference turn’s tokens. [ BINy] is the key indicator
using which the model recognizes the reference turn.

Task specific heads: As shown in Figure 2, the model has vari-
ous heads: MLM (Masked Language Modeling) and classifier heads
for IQ (Interaction Quality), Domain and Intent classification. Dur-
ing multi-stage pretraining, we only use the MLM head for calcu-
lating the loss and updating the weights. The MLM head operates
on the output representations of tokens. For multi-task fine-tuning,
we use the classification heads for calculating the loss. Each of the
classification heads takes the encoded representation of the [CLS]
token as input. Each classifier head has a dense layer, followed by
a projection layer. All heads are initialized randomly. The output
size of the projection layer is equal to the number of labels of the
respective task.

Note that we do not design the architecture with real-time/online
IQ prediction in mind. We focus on offline evaluation where we
have previous and next turns available, when evaluating the quality
of the reference turn. However, our design is easily extensible to
online evaluation, in which case, the reference turn will always be
the last turn in the dialogue session.

3.4 Datasets

Historical Dialogue Sessions: We randomly sample around 2
million English dialogue sessions between users and Alexa from
anonymized logged historical data. We do not use any task specific
human annotations for these dialogue sessions. These sessions span
many NLU domains and intents, and contain turns where the users
had both good and bad experiences. As described later, we use these
dialogue sessions for the first stage of pretraining.

Interaction Quality (IQ) dataset: This dataset is sampled from
Alexa Live Traffic and is annotated with IQ labels provided by ex-
perts: 0 (Non-defect or satisfactory experience) and 1 (Defect). Only
one turn per dialogue session has a defect/non-defect label, which
we refer to as the reference turn. The reference turns are labelled
from the end user’s perspective. For example, considering turn 1 as
the reference turn in Table 2, the annotators would give it an IQ
label of 1 (defective), as the agent did not play the song intended
by the user in that turn. To get the IQ labels, we use a similar Re-
sponse Quality annotation workflow as described in [2]. We
have around 500K dialogues for training, 100K for development set,
and 100K for testing. The training and test sets are sampled from
different time periods. This leads to a test set that has a different do-
main distribution than the training set, and also some new domains
that are not present in the training set. All the turns have domain
and intent strings that were produced by a separate NLU system.
The IQ prediction task is the primary task at which we want to do
better with the least amount of human annotated data possible. For
evaluation, we focus on F1-score for the defective class as the binary
classification metric. We do so because our dataset is imbalanced
(25% defect and 75% non-defect) and identifying dissatisfactory
turns is of more importance.
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Out-of-domain (OOD) testset: This dataset is sampled from
annotated IQ test data. It has 30K instances in total and is only used
for evaluation in particular to see the benefits and limitations of
pretraining and multi-task learning on out-of-domain instances.
To ensure that there is no overlap between the domains/intents
of the turns in this testset with the training set, we sample three
different fractions (5%, 10% and 25%) from the IQ training dataset
(500K instances), and use these subsets for training the models.

3.5 Pretraining: Domain adaptive and Task
adaptive

Masked Language Modeling is a common pretraining strategy for
transformer based architectures in which a random sample of the
tokens in the input sequence is selected and replaced with the
special [MASK] token. The MLM loss function is the cross-entropy
loss on predicting the masked tokens. Following Liu et al. [13], we
conduct token masking dynamically with each batch by masking
15% of the tokens. RoBERTaIQ is initialized from RoBERTa-base and
is further pretrained as described below. The MLM loss function is
defined as:

M
Linim == ), log P(xm) (8)
m=1

where M is the total number of masked tokens and P(xy,) is the
predicted probability of token xp,.

Following [7], we perform the first stage of pretraining on un-
labelled historical dialogue sessions data, which we refer to as
Domain Adaptive Pretraining (DAPT). Similar to [9], we then fur-
ther pretrain this model using the MLM loss on the IQ training
dataset in the second stage, which we refer to as Task Adaptive
Pretraining (TAPT). Note that both DAPT and TAPT do not require
any task specific labels.

3.6 Multi-task (MT) fine-tuning

After the multi-stage pretraining process, we finetune the model on
the main downstream task of IQ prediction, with additional heads
for Domain and Intent prediction. Our hypothesis is that we can
benefit from both cross-task data and the regularization effects of
MT, especially when the IQ data is small. The multi-task loss is
defined in Equation 9:

LO)= Y My fy(Enccrs(x)) ©)

xlj/ , yi}/ €Dy
where i refers to one of the tasks (IQ, Domain, Intent), xt yi refer
to raw dialogue features and task labels respectively, Enccrs (xl’#)
refers to the encoding of [CLS] token after passing x"// through the
shared RoBERTaIQ encoder, fy; is the respective task classifier, / is

the cross-entropy loss and 4y is the task weight. We empirically
set Ajo = 1, and Agomain = Aintent = 0.5.

4 EXPERIMENTS

In this section, we first compare RoBERTaIQ with other baselines
to see the effects of different model architectures. We then show
the results of ROBERTaIQ with multi-stage pretraining and multi-
task fine-tuning with varying amounts of IQ training data. All the
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experiments were conducted on an AWS p3.16xlarge instance with
8 GPUs. All the numbers reported with “+” prefixes denote absolute
differences in the metric w.r.t the corresponding baseline. Other
training details and hyperparameters can be found in the Appendix
A.

4.1 Comparison with baselines

Table 3: RoBERTaIQ vs baselines on IQ test set (100K exam-
ples)

Perf(%)
Using 100% IQ training data |

‘ Accuracy F1  Precision Recall

MaUdE++ (Text features only) [20] 86.5 77.4 78.0 76.9

MaUdE++ (+ system metadata) +2.1 +1.9 +2.7 +1.1
RoBERTa-eval [27] | -33 -54 -5.9 -5
RoBERTaIQ (This work) ‘ +4.2 +6.1 +6 +6

Table 3 shows the performance comparison between ROBERTaIQ
and other baselines on IQ test set. We use the full IQ training data
(500K instances) to train all the models. The RoBERTa encoder
weights are initialized with a pre-trained model ! and are finetuned
end-to-end with gradients coming from IQ classification loss. We
do not apply any multi-tasking or pretraining strategies for this
comparison. Using system metadata features helps increase the
performance of MaUdE++ by 1.9% F1 score, but RoBERTalQ, which
uses only the text features, still outperforms it by 4.2% absolute F1
score. Please refer to Appendix B for a case study between MaUdE++
and RoBERTalIQ.

RoBERTa-eval performs worse than the MaUdE++ baseline by
5.4% F1 score. This is mainly due to the fact that RoBERTa-eval sees
only the left context (previous turns).

4.2 RoBERTaIQ Full Results on IQ testset

Table 4 shows the performance of ROBERTaIQ) model on IQ testset
with different training settings. To show the respective benefits of
pretraining and multi-task learning, we train models with varying
amount of IQ training data. “Scratch” refers to training on IQ only,
without pretraining or multi-task learning. In DAPT runs, we start
with a RoOBERTalIQ model pretrained on historical dialogue sessions
and finetune on IQ data. In TAPT runs, we start with the DAPT
pretrained model, and further pretrain on the IQ training data with
MLM loss (without using the IQ labels) and then fine-tune on IQ
training data with the classification loss. We perform TAPT experi-
ments only for the cases where we use 100% of available IQ training
data. For all the Multi-task runs, we include other classification
tasks (Domain and Intent) in addition to IQ for fine-tuning.

Effects of DAPT and TAPT: As can be seen from Table 4, DAPT
provides consistent benefits in terms of boosting the performance
on IQ prediction task, improving the F1 score by absolute 2.7% in
the best case. This successfully demonstrates knowledge transfer
from unlabelled historical data to the downstream task of IQ pre-
diction. For the scenario where we use 100% of IQ training data, we

Uhttps://huggingface.co/roberta-base
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Table 4: Model performance comparison with pretraining
and finetuning on varying amounts of IQ training data. All
the rows show evaluation metrics on IQ testset (100K in-
stances)

Perf (%) Accuracy F1 Precision Recall
1Q (5% Data)

Scratch (Baseline) 847 722 75.1 69.5
+ Multi-task +2.7 452 +4.5 +5.7
+ DAPT +0.5 +1.8 -1.1 +4.5
+ DAPT + Multi-task +3.8  +7.1 +6.3 +7.5
1Q (10% Training Data)

Scratch (Baseline) 88.2 786 81.6 75.9
+ Multi-task +0.5  +19 -2.3 +5.8
+ DAPT +1.1 +2.7 -0.2 +5.3
+ DAPT + Multi-task +14  +2.9 +0.8 +4.8
1Q (25% Training Data)

Scratch (Baseline) 89.7  82.1 81.7 82.4
+ Multi-task 0.0 +0.2 -0.6 +1.0
+ DAPT +0.8 +1.5 +0.2 +3.1
+ DAPT + Multi-task +0.5  +1.0 -0.3 +2.5
1Q (50% Training Data)

Scratch (Baseline) 90.1 822 84.2 80.4
+ Multi-task +0.2  +0.6 -0.3 +1.5
+ DAPT +0.6 +1.9 -1.8 +5.6
+ DAPT + Multi-task +0.6  +14 -0.1 +2.9
1Q (100% Training Data)

Scratch (Baseline) 90.7 835 84.0 82.9
+ Multi-task -0.3 -0.3 -0.4 -0.1
+ DAPT +0.4  +0.7 +0.2 +1.4
+ TAPT +0.5 +1.2 +0.6 +1.8
+ DAPT + Multi-task +0.1  +0.3 +0.6 +0.1
+ TAPT + Multi-task +0.1  +0.44 +0.7 +0.3

see TAPT providing a further boost over DAPT.

Effects of Multi-task learning: The performance improve-
ments that come with multi-task learning vary with the IQ training
dataset size. We see maximum benefits, i.e. an increase in F1 score
by an absolute 5.2% when we use only 5% IQ training dataset. The
improvements diminish with increasing IQ training dataset size,
even leading to a slight decrease in F1 score when 100% for IQ
dataset is used for training. This leads to the conclusion that the
additional tasks help the model learn better through extra super-
vision when IQ training data is small. But after a certain point as
the training dataset size increases, cross-task knowledge transfer
becomes less useful and instead the regularization effects of other
tasks start hurting the performance on the primary task of IQ pre-
diction.

Overall, we find that combining pretraining and multi-task learn-
ing provides gains as big as 7.1% F1 score improvement with smaller
training dataset sizes. In other words, using these techniques, we
can significantly reduce the amount of training dataset (IQ anno-
tations), which is both costly and time-consuming to collect. This
can be especially useful for the new or the long-tail domains, for
which we do not have IQ annotations available.
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4.3 RoBERTalIQ Results on Out-of-Domain
(OOD) Dataset

Table 5: Model performance comparison with pretraining
and finetuning on varying amounts of IQ training data. All
the rows show evaluation metrics on Out-of-domain dataset
(30K instances)

Perf (%) ‘ Accuracy F1 Precision Recall
1Q (5% Data)

Scratch (Baseline) 83.71 73.75 73.42 74.09
+ Multi-task +1.92  +2.12 +5.38 -0.92
+ DAPT +1.28 +3.33 -0.48 +7.65
+ DAPT + Multi-task +3.54 +4.84 +8.21 +1.69
1Q (10% Data)

Scratch (Baseline) 88.08  79.28 85.61 73.82
+ Multi-task -0.30  +0.86 -5.2 +6.05
+ DAPT +1.97 +4.32 -0.42 +8.25
+ DAPT + Multi-task +0.59 +1.78 -1.75 +4.63
1Q (25% Data)

Scratch (Baseline) 90.77  84.73 86.64 82.9
+ Multi-task +.10  +0.49 -1.35 +2.25
+ DAPT +1.66 +3.18 +0.17 +6.13
+ DAPT + Multi-task +0.99  +1.93 +.02 +3.76

Table 5 shows the evaluation results on the OOD dataset. DAPT
consistently provides improvements in F1 scores, irrespective of
the size of IQ training dataset used. However, multi-task learning
provides improvements only with small IQ training set (5%). The
improvements are almost negligible when training dataset size in-
creases, and are much lesser than that of DAPT. This is expected as
the knowledge that comes from domain and intent prediction is no
longer useful, as we are evaluating on a dataset that has no domains
and intents in common with the training dataset. This observation
shows the limitations of our multi-task learning setup and empha-
sizes the importance of choosing domain agnostic auxiliary tasks
whose knowledge is transferable to the target task of interest.

5 ABLATION STUDIES

5.1 Contributions of different tasks in
Multi-task learning

Here, we gauge the contributions of different tasks that aid in
improving the performance on IQ prediction. We conduct the ex-
periments with 5% and 10% IQ training set and other tasks, and
remove the tasks one by one to see their impact. As shown in Table
6, the task of Intent prediction is more helpful for improving the
performance of IQ prediction. This is expected as there are specific
intents that capture user sentiments like pleasantries or insults.
Other intents capture instances where the users try to terminate
the current turn or exit a skill if the agent is not doing the right
thing. These behaviors (as captured by NLU intents) are directly
related to user experience and hence get reflected in improved IQ
prediction accuracy.
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Table 6: Contributions of different tasks in Multi-task learn-
ing

Perf (%) Accuracy F1  Precision Recall
1Q (5% Data)

All tasks (Baseline) 874 774 79.6 75.2
No Domain -03  -1.1 -1.2 -0.9
No Intent -1.5 -3 -3.9 -2.1
1Q (10% Data)

All tasks (Baseline) 88.7 80.5 79.3 81.7
No Domain -0.2 -0.8 -0.8 -0.8
No Intent -1.3 -1.7 -2.1 -1.2

5.2 Effect of time encoding in RoOBERTalIQ

To see the importance of capturing the time difference between
the reference turn and other turns, we do a study where we do
not provide any temporal information to the model through the
time bin embeddings described in Section 3.3. As shown in Table
7, we see a drop of almost 9% in F1 score if we do not capture the
temporal differences between the turns.

Table 7: Effect of time difference encoding in RoOBERTalQ

Perf (%) Accuracy F1  Precision Recall
1Q (100% Data)

RoBERTaIQ 90.7 83.5 84 82.9
No Time encodings -5.6 -8.8 -9.1 -8.5

6 CONCLUSION AND FUTURE WORK

In this work, we presented a framework for automatic turn-level
dialogue evaluation in large scale Conversational Al systems. We
introduce a new modeling architecture on top of RoBERTa that is
more suitable for encoding dialogue sessions while capturing the
temporal differences across different turns. We showcase that this
architecture alone boosts the F1 score by 4.2% over other model
architectures used in dialogue evaluation literature, while making
use of only the textual features. To make the training more data
efficient, we propose multi-stage pretraining and multi-task learn-
ing approaches. This helps us leverage large amount of historical
dialogue sessions and other system signals, like Domain and Intent,
which are readily available. These approaches significantly reduce
the requirement of obtaining annotated Interaction Quality (IQ)
data. With only 5% of annotated training data, we achieve the same
F1 performance as our baseline on IQ testset.

One of the limitations of our multi-task learning approach is
that the tasks used are domain specific, which makes it challeng-
ing to transfer the knowledge to out-of-domain cases. For future
work, we plan to incorporate more auxiliary tasks for multi-task
learning that are agnostic to dialogue domains, like user utterance
rephrase detection, predicting cohesion between request and re-
sponse and next session prediction [25]. Pretraining proved to be
very promising in improving the IQ prediction performance for
both in-domain and out-of-domain cases. In the future, we want to
consider much larger scale pretraining by increasing the number
of unlabeled historical dialogue sessions by an order of magnitude.
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Table 8: Comparison of RoOBERTaIQ model predictions with MaUdE++. Reference turn in each session is boldfaced.

Timestamp

(in seconds) Dialogue Session

MaUdE++ RoBERTalQ
prediction prediction

1Q label

[USER] how much do amungus plushies cost

T=0 [AGENT] One moment, for amungus plushies this is the closest I could find. The first one is Winsterch Kids Cats Stuffed Animal Toys
1 1 0 1
o9 [USER] how much do among us plushies cost
[AGENT] One moment. Showing results for among us plushies. The first one is Bedtime Originals Among Us Plush Toy.
=0 [USER] Start joke responder
B [AGENT] Ok, Here’s Joke Responder Welcome to joke responder. Please tell me a joke.
B o6 [USER] why did the skeleton not cross the road o 1 0
[AGENT] I don’t know, why did the skeleton not cross the road
S [USER] because he didn’t have the guts!
B [AGENT] Ha ha ha. So much talent! So many laughs!
=0 [USER] show me shark videos
B [AGENT] Here’s what I found (playing video)
3 1 0 1
=8 [USER] play baby shark on amazon prime

[AGENT] Here’s Baby Shark , by Pinkfong , on Amazon Music.

A TRAINING SETUP

We use the HuggingFace Transformers 2 library for all our training
and evaluation code. Table 9 and 10 show the hyperparameters for
pretraining and fine-tuning, respectively.

Table 9: Hyperparameters for Pretraining (DAPT and TAPT)

Hyperparameter Assignment
maximum epochs 20
MLM masking probability 0.15
max learning rate 5e-4
optimizer AdamW
batch size per GPU 4
gradient accumulation steps 32
learning rate decay Linear
effective batch size 4328 = 1024
Adam epsilon le-6
Adam betas 0.9, 0.999

Table 10: Hyperparameters for Fine-tuning

Hyperparameter Assignment
maximum epochs 20
patience (for early stopping) 4
max learning rate le-5
dropout 0.1
optimizer AdamW
batch size per GPU 4
gradient accumulation steps 8
learning rate decay Linear
effective batch size 4°8*8 = 256
Adam epsilon le-6
Adam betas 0.9, 0.999

Zhttps://github.com/huggingface/transformers

B CASE STUDY

Table 7 shows a comparison of model predictions of ROBERTalIQ
with MaUdE++ . We use the better performing version of MaUdE++,
i.e., the one that also uses system metadata as input features.

Dialogue 1: By looking at turn 1 (reference turn) in isolation, it
appears that the agent gave the right response. However, turn 2
makes it clear that turn 1 had an ASR error; “Among Us” was in-
correctly recognized as “amungus”. RoOBERTaIQ’s encoder was able
to recognize this, as it has the ability to apply self-attention mecha-
nism across tokens of different turns, and hence correctly predicted
1Q score = 1, for turn 1.

Dialogue 2: In turn 2, the user is interacting with a “Joke Insider”
3P skill. MaUdE++ predicts that the response is unsatisfactory due
to presence of “I don’t know”. However, ROBERTaIQ made a better
sense of the response using the previous and next turns, and pre-
dicted the response to be satisfactory (IQ score = 0).

Dialogue 3: MaUdE++ failed to recognize from the context that
the user wanted to listen to Baby Shark, while RoOBERTalQ figured
that out and correctly predicted IQ score = 1 as the agent showed
the user irrelevant shark videos in turn 1.
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