
Improving Natural Language Understanding Accuracy by
Pre-Adapting to Live Traffic

Lisheng Fu, Konstantine Arkoudas
Amazon Alexa AI
New York, NY, USA

{lishef,arkoudk}@amazon.com

Abstract
Virtual assistants enable users to interact with a large number

of services in natural language. Third-party developers building
new applications for virtual assistants often have limited annota-
tion resources and find it challenging to procure large amounts
of suitable training data, opting instead for limited collections of
sample utterance templates, annotated with their semantics. We
can enrich such collections by synthesizing more examples based
on the given templates, but the resulting utterance distribution will
still be quite different from the distribution of actual user utterances
in the wild. We treat this as a domain adaptation problem from
developer-provided sample utterances to live utterances, and we
apply adversarial training between them to mitigate their gap. In
addition, we show that we can achieve this in the pre-training stage
as pre-adaptation. We demonstrate consistent improvements across
different test sets in two different languages.
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1 Introduction
Virtual assistants such as Amazon’s Alexa and Google Assistant

have become increasingly popular in recent years. These assistants
accept spoken utterances from users to complete tasks such as set-
ting an alarm, looking up the weather, playing music, and so on.
They use speech recognition to convert voice to text and then use
natural language understanding (NLU) to identify the intents and
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slots in the utterances (Table 1). NLU is typically formulated as the
joint task of intent classification (IC) and named entity recogni-
tion (NER), also known as slot labeling. With sufficient volumes of
annotated training data, such NLU problems can be solved fairly
well.

Utterance play taylor swift
Intent PlayMusicIntent
Slot Other ArtistName ArtistName

Table 1: Example of intent classification and slot labeling for
utterances.

Most modern virtual assistants are extensible, allowing third-
party developers to build new voice-powered applications for new
domains. In Alexa, external developers build new applications (so-
called skills) with the Alexa Skill Kit, or ASK for short, which allows
them to define an interactive model including an intent schema,
slot types, and sample annotated utterances [10] that later serve as
the training data for a statistical NLU model (see listing 1).

Listing 1: Skill definition which contains sample utterances.
{"skill_name": "play music",
"sample_utterances": [
{"id": 0, "intent": "PlayMusicIntent", "text": "play {SongName}"

},
{"id": 1, "intent": "PlayMusicIntent", "text": "listen to {

SongName}"},
{"id": 1, "intent": "PlayMusicIntent", "text": "can you play {

SongName}"},
{"id": 3, "intent": "StopMusicIntent", "text": "stop the music"}

,
{"id": 4, "intent": "ResumeMusicIntent", "text": "continue the

song"}
],
"slots": [{"name": SongName, "values": ["BLINDING LIGHTS", "

DANCE MONKEY", "ROSES"]}]
}

Depending on the resources available to the developers, these
sample utterances can be quite limited in their scope. Consequently,
users in real life end up speaking in markedly different ways that
were not anticipated by the developer-provided samples, resulting
in poor NLU performance. There are two serious challenges for
NLU here: the low volume of sample utterances serving as training
data, and their distribution drift from actual user utterances. An
additional practical constraint is that these challenges must be
addressed in a cost-efficient and scalable way.

We tackle these challenges by introducing live traffic data into
model building and employing adversarial training [5] between
sample utterances and live utterances to implement the desired
adaptation. We use small models (BiLSTMs) to be able to train
and run inference on low-cost machines in production. Moreover,
we try to adapt the models to live traffic in pre-training as pre-
adaptation (Figure 1). In this way, we reduce training cost and
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Figure 1: Pre-adaptation to Live Traffic

latency while maintaining accuracy improvements. In particular,
our contributions are as follows:

• We show that adversarial training can leverage live traffic
to improve NLU (IC and NER) accuracy.

• We demonstrate that this kind of domain adaptation can be
achieved in pre-training as pre-adaptation.

• We demonstrate consistent improvements across different
test sets in two languages.

• Our solution is cost-efficient and can be deployed in produc-
tion with no additional infrastructure.

The rest of the paper is organized as follows. In Section 2 we
review related technologies. In Section 3 we introduce our model
components, live traffic selection, and how to train the model as
pre-adaptation. We present our experimental results in Section 4
and conclude in Section 5.

2 Related Work
Spoken Language Understanding (SLU): This is an impor-

tant component of conversational AI systems, which typically in-
cludes domain detection, intent classification, and slot labeling.
Currently, state-of-the-art SLU systems are mostly based on deep
learning models [12, 13, 17]. Although these models show good
performance in a variety of datasets, they usually require large
amounts of training data and make strong i.i.d. (independent and
identically distributed) assumptions. It is still a challenging research
problem to make these models work with small training datasets,
particularly when these are based on a distribution that is different
from that of the test data. This is the problem we tackle in this
paper.

Adversarial Training: There have been different adversarial
training strategies for augmenting training data, such as Gener-
ative Adversarial Training [6] and Virtual Adversarial Training
[14]. Both add a noise function to the input data as regularization.
This can make the model more robust to test data coming from

a different distribution. In our setting we have a similar problem
but the distribution gap is often larger than a small permutation.
We also have access to the distribution difference from the live
traffic. Thus, we can use domain adversarial training [5] to take
advantage of this prior knowledge. This technique has also been
successful for adaptation in a variety of NLP tasks such as natural
language inference [1, 8], natural langauge grounding [16], and
information extraction [4]. Here, we apply it on SLU with joint
IC and NER training. More distinctly, we conduct the adversarial
training in the pre-training stage, and show that the adaptation
still helps after fine-tuning. In terms of data (domain), we adapt the
models to the user-generated live traffic from sample utterances.
The distribution change is different from the academic datasets
which often have domains as different genres or contain manually
designed difference.

Pre-training: This has been a popular technique for models
with insufficient training data, which can also be helpful in dealing
with domain shifts. Large pre-trained Transformer-based language
models and their variations [2, 3, 11] have delivered very strong
results on many different NLP tasks. They have shown fairly good
adaptation ability on language expressions that do not appear in the
training set. However, a downside of these models is that they are
extremely large, which inhibits training and inference in production.
The cost of using these models is also much higher, and this may not
always be affordable. Our approach is based on lightweight BiLSTM
models [7], so it is more cost-efficient. Our results demonstrate good
adaptation even with these small models.

3 Method

3.1 Intent Classification and Slot Labeling
Baseline

The systems are built based on skill definitions (Listing 1). A pop-
ular hybrid approach to NLU is to use a symbolic pattern matching
algorithm based on the sample utterances in the skill definition,
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Figure 2: Model architecture with the adversarial training.

and a statistical model for utterances that cannot be handled by
such pattern matching. In a cost-efficient setting, our base statistical
model is a small BiLSTM with joint intent classification and slot
decoding. Both training and inference can be done on low-cost
machines. The intent classification (IC) component is a multi-class
classification task and the slot labeling (SL) is a sequence labeling
task. For the input layer, we convert utterance tokens to subword
Byte Pair Encoding (BPE) embeddings [15]. The main encoder is
a BiLSTM on top of the frozen BPE embeddings. The BPE embed-
dings are frozen to be shared between a set of models to reduce
the cost of storage and computation. Then, we have an lightweight
auxiliary BiLSTM encoder with a smaller vocab size to compensate
the limitation of the frozen embeddings for each model. As the
results, the trainable parameters that require storage for the models
are more than 10 times smaller than the frozen embeddings. Finally,
we have auxiliary gazetteer features encoded in the gazetteer em-
beddings. Gazetteer features are indicator features of whether the
token stays in a span that matches an entry of the dictionary. Then,
the indicator features are converted to vectors for training. In the
output layers, we have a softmax for IC and a conditional random
field (CRF) layer for SL. Both have one hidden fully connected layer
before the last layer. The design rationale behind frozen BPE em-
beddings is to be able to serve a large number of models at the
same time. Each additional model will only incur a fairly small
cost in space and time. The model is trained with the sum of the
cross-entropy losses of IC and SL. The formulation is the following:

𝑥𝑚𝑎𝑖𝑛 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝑊𝑓 𝑟𝑜𝑧𝑒𝑛), (1)

𝑥𝑎𝑢𝑥 = 𝐵𝑖𝐿𝑆𝑇𝑀 (𝑊𝑎𝑢𝑥 ), (2)
𝑥𝑖𝑐 =𝑚𝑎𝑥_𝑝𝑜𝑜𝑙 ( [𝑥𝑚𝑎𝑖𝑛 ;𝑥𝑎𝑢𝑥 ]), (3)
𝑥𝑠𝑙 = [𝑥𝑚𝑎𝑖𝑛 ;𝑥𝑎𝑢𝑥 ;𝑊𝑔𝑎𝑧], (4)
𝑦𝑖𝑐 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑑𝑒𝑛𝑠𝑒 (𝑥𝑖𝑐 )), (5)
𝑦𝑠𝑙 = 𝐶𝑅𝐹 (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑤𝑖𝑠𝑒_𝑑𝑒𝑛𝑠𝑒 (𝑥𝑠𝑙 )), (6)

𝐿𝑖𝑐_𝑠𝑙 = 𝐿𝑖𝑐 + 𝐿𝑠𝑙 , (7)

where𝑊𝑓 𝑟𝑜𝑧𝑒𝑛 are the frozen BPE embeddings shared by all skills,
𝑊𝑎𝑢𝑥 are the auxiliary BPE embeddings for each skill with a smaller
vocab size, and the gazeetter embeddings𝑊𝑔𝑎𝑧 are only used for
SL. The model architecture is shown in Figure 2. This includes the
adversarial classifier, which we describe in the next section.

3.2 Adaptation by Adversarial Training
To adapt to live traffic, we take unlabeled user utterances as input

and use the source of these utterances (live traffic) as prior knowl-
edge in order to perform adversarial training between sample and
live utterances. This can be viewed as domain adversarial training
[5], where domain = {live, sample}. The adversarial training is inde-
pendent of the main underlying tasks, as it does supervised training
on its own labels. Accordingly, it can be applied to other problems
as well. In our setting, we add a new domain classifier. The labels
are the source of the utterances (i.e., live or sample). This is a binary
classifier which determines whether an utterance comes from live
traffic or is a sample utterance coming from the domain definition.
The input consists of the representations that are used as signals
into the main tasks (i.e., IC and SL). These representations would
learn the domain difference when optimizing the loss of the domain
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classifier. We then apply a Gradient Reversal Layer (GRL) [5] . The
representations will learn in a reverse direction, which achieves
domain invariance. This means the input representations will tend
to become the same for live utterances and sample utterances.

More formally, the input representation for the domain classifier
will go though a GRL first:

𝐺𝑅𝐿(𝑥) = 𝑥, (8)
𝑑𝐺𝑅𝐿 (𝑥)

𝑑𝑥
= −𝐼 , (9)

where 𝑥 is the input representations and 𝐼 is the identity matrix. The
parameters of the domain classifier and the input representations
are optimized in reverse directions, which act as a min-max game
in the adversarial training. This classifier is trained with the main
tasks (IC and SL) in a multi-task setting. The loss is also a cross
entropy loss:

𝐿 = 𝐿𝑖𝑐_𝑠𝑙 + 𝜆𝐿𝑎𝑑𝑣, (10)

where 𝜆 controls the min-max game. When 𝜆 is small, the input
representations are still mainly learned from the IC and SL tasks,
and thus distinctive for source (sample or live). When 𝜆 is suffi-
ciently large the input representations are more domain-invariant,
which should therefore generalize better on the target domain (live
traffic). If 𝜆 is too large, the adversarial loss will dominate the main
tasks, leading to poor performance in both domains. We conduct
grid search for the hyper-parameter tuning of 𝜆 as explained in
Section 4.2 and Section 4.3.

Since we are doing joint IC classification and SL decoding, we
use the concatenation of the two representations to take account
of both tasks:

𝑥 = [𝑥1;𝑥2], (11)
𝑥1 =𝑚𝑎𝑥_𝑝𝑜𝑜𝑙 (𝐵𝑖𝐿𝑆𝑇𝑀 (𝑊𝐵𝑃𝐸 )), (12)
𝑥2 = 𝑙𝑎𝑠𝑡_𝑝𝑜𝑜𝑙 (𝐵𝑖𝐿𝑆𝑇𝑀 (𝑊𝐵𝑃𝐸 )), (13)

where 𝑥1 is also used to predict intent as 𝑥𝑖𝑐 and 𝑥2 is the sequence
representation as last pooling of tokens 𝑥𝑠𝑙 that predicts slots.

3.3 Live Traffic Selection
Unlike sample utterances provided by developers, live traffic

may contain several orders of magnitude more utterances. Not only
will the training cost be much higher if we take all live traffic, it will
also be hard to maintain balance in the multi-task training. We thus
experiment with different criteria for selecting utterances from live
traffic:

• Top/RandomN This extracts a subset of size𝑁 by sampling.
By making 𝑁 close to the number of sample utterances, we
reduce training cost while simplifying multi-task training.
We consider the frequency of unique utterances in live traffic,
in order to either select the top 𝑁 or else to randomly sample
according to utterance frequency.

• ASR Confidence This considers automatic speech recogni-
tion (ASR) errors in live traffic, which may result in training
noise. We experimented with this threshold to remove poor
quality utterances.

• Pattern Match Our system is a mixture of pattern match-
ing on the basis of the sample utterances and the statistical

model. User utterances that are already recognized by pat-
tern matching (i.e., which match sample utterances) do not
add value, so this criterion aims to filter out such utterances
and focus instead on utterances that only exist in live traffic.

• Minimum Occurrence We observe that there are a lot of
long-tail utterances which occur very rarely in live traffic.
We hypothesize that these utterances have a higher chance
of being out-of-domain utterances or created due to vari-
ous errors. Valid utterances with proper semantics are more
likely to be uttered multiple times by one or more users.

3.4 Pre-adaptation
Although selecting a small subset of live traffic can significantly

reduce training costs, these are still much higher than they would be
without any live traffic. Introducing live traffic into model building
may also introduce privacy concerns, as it directly incorporates
customer data, which could potentially be exploited by malicious
developers. Thus, putting this adaptation process in the pre-training
stagemay be preferable. It is not clear how to achieve this, especially
when we have a large number of models instead of just one model.
We experiment with a simple variation that turns out to work fairly
well in practice.

Wemanually create a new task that combines all intents and slots
together. The label space is the combination of all tasks. This is like
doing multi-task training within a single task. We combine the live
traffic as well for the domain classifier. Then the adversarial training
is performed on this single model as pre-training. The adaptation
for the actual models in production is achieved by fine-tuning the
encoder obtained from this combined dataset. As the pre-trained
encoder is the same size as our original model, the training cost
and latency in production do not change at all. Our experiments
show that it can still perform adaptation fairly well, even though it
is done only in pre-training on a combined dataset.

4 Experiments

4.1 Settings
We evaluate our methods on our internal datasets, which consist

of dev and test data for a fixed set of skills. To verify the generality
of our models, we tested them in two different language/locales.
We have four test sets in the following experiments (en_US, en_US
held-out, de_DE, de_DE held-out), where en_US and de_DE were
used for dev (tuning) purposes. All four sets were sampled from
live traffic. The number of skills in each test set is around 80. The
model sizes are the same for all skills.

We use Semantic Error Rate (SemER) as our evaluation metric
for IC and SL. SemER is a metric that combines both tasks by
treating the intent as one of the slots. It allows for partial credit,
as it computes a sort of edit distance between a prediction and its
reference. More formally,

𝑆𝑒𝑚𝐸𝑅 = ((𝑆 + 𝐼 + 𝐷)/𝑇 ) ∗ 100
𝑆 = number of substitution errors

𝐼 = number of insertion errors

𝐷 = number of deletion errors

𝑇 = number of total slots
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Method SemER Reduction (%)
Baseline 0.0

+ Adversarial Training 1.85
+ Skill-specific Weight 3.80

Table 2: Adversarial training with live traffic.

Method en_US held-out de_DE held-out
Baseline 0.0 0.0 0.0 0.0

+ Pre-adaptation 2.39 1.88 2.28 2.10
Table 3: Relative SemER Reduction (%) with pre-adaptation.

where the errors and 𝑇 are computed based on the reference se-
mantic representations. Relative SemER reductions are reported in
the tables.

In order to reduce training costs in production, we use small
dimensions for our models. Our main BiLSTM encoder has 64 units
and the auxiliary encoder has 16 units. The embedding sizes for
the frozen BPE, auxiliary BPE, and Gazetteers are 256, 16, and 8,
respectively. The vocab size is around 55K for the frozen BPE and
less than 10K for the auxiliary BPEs.We use the AdamOptimizer [9]
with a learning rate of 0.002. In order to obtain more stable results,
every score is computed as the average of 5 runs with different
random seeds.

4.2 Adaptation in Production
In this section we present results when we have access to live

traffic during model building. This means we can have domain
adversarial training along with the IC and SL tasks in production.
We first experiment with different criteria for filtering live traffic, as
discussed in Section 3.3. We obtain the best results with the top 20K
unique utterances, each having at least two occurrences. Random
sampling does not work very well in our setting, most likely because
of too many long-tail unique utterances. Thus, we use the most
frequent utterances, which appear to better characterize live traffic.
20K utterances for each skill result in a good trade-off between
training cost and accuracy. Accuracy does not improvemuch farther
if we add more live data. ASR confidence levels and filtering out
pattern-matched utterances do not make much difference in our
results. Even though we can observe some poor quality utterances,
our models seem to be robust in tolerating that level of noise. Live
utterances have been de-identified for experiments. With these
live-traffic settings, we experiment on the en_US dataset, which
contains 88 skills. We tune the weight of the adversarial loss over
the list 𝜆 = [0.01, 0.03, 0.05, 0.08], obtaining the best results with
0.08. We obtain 1.85% relative SemER reduction in this setting. If we
allow using different weights for different skills, the improvement
goes up to 3.8% within these four weights (Table 2). Thus, if we
do enable live traffic data in production, allowing the skill-specific
weight for the adversarial loss will maximize the gains obtained
from live traffic data.

4.3 Pre-adaptation
This section presents results when we apply adversarial training

in pre-training (Section 3.4), which reduces production costs for
training and inference and may better safeguard privacy. We apply
pre-training on the main BiLSTM (64-unit) encoder and fine-tune

during training on the sample utterances. We then evaluate the
models on the test sets. Notice that there could be different ways
to pre-train an BiLSTM encoder. We have two more pre-training
baselines here:

• Masked Language Model: This is to perform language
model pre-training on amore recent BERT-styleMLM (masked
language model) task [3], aimed at pretraining the BiLSTM
encoder.

• Target Task Pre-training: This is to pretrain on similar
tasks (IC and SL) when much more annotated data is avail-
able.

However, neither of these two baselines yields an improvement
on these test sets. This might be counterintuitive. Although the
language model has access to live traffic data, it may not capture
language expressions that are more specific to individual skills and,
more importantly, their labels (which are not seen during MLM
training). Our small encoder also makes this harder. For IC and SL
pre-training, the pre-training tasks contain very different sets of
intents and slots. When we apply the technique to a set of diverse
skills, as in our test sets, it is common for it to improve some skills
while hurting others. We need more precise pre-training in order
to make the technique viable.

Our adversarial pre-training combines the targeted sample ut-
terances and live utterances and focuses on bridging the gap be-
tween training and test data. We obtain consistent improvements
on all test sets, including two held-out test sets in two different
languages (Table 3). The weight of the adversarial loss is tuned at
𝜆 = (0.1, 1.0, 𝑠𝑡𝑒𝑝 = 0.1). The best 𝜆 is 0.3 for en_US and 0.5 for
de_DE. On the held-out test set, the pre-trained encoder is directly
applied without tuning. The generalization on a held-out test set de-
pends on the distribution shift between live and test data, changes
in skill definitions, and changes in the underlying skill set. This
is easier if we just split the test set rather than divide according
to date ranges. This might be the main reason that we see slightly
better consistency in de_DE than in en_US, as we use the former
splitting scheme for de_DE and the latter for en_US. In de_DE we
just split the test set because we do not have enough annotations
on different date ranges for the same set of skills.

5 Conclusion
We have presented a simple and cost-efficient method for adapt-

ing synthetic sample utterances to live traffic. This technique is
largely unsupervised, which makes it easier to deploy. If live traffic
data is enabled, we have shown that using skill-specific weights for
the adversarial loss will maximize the accuracy gains to be derived
from that data (3.8% relative improvement). Moreover, we achieve
adaptation in pre-training with 1.88%-2.39% relative improvement
in two different languages. This is an interesting result, as it has not
been clear that adaptation would be at all possible in pre-training
stages.
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