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ABSTRACT
Active learning is a commonly used technique to reduce the amount

of labeled data necessary for supervised learning. In this paper, we

focus on collection of labeled examples in a domain with large un-

labeled dataset and extreme class imbalance. This scenario presents

several challenges to Active learning. Traditional active learning

strategies can face acute difficulty in locating minority class ex-

amples and can fail completely due to the well-known cold start

problem. The problem is further complicated by scale as for large

datasets it can be expensive to execute Active learning computa-

tions on the whole domain set. Additionally, the active learning

strategies can turn out to be impractical or inefficient for interactive

use due to high computation time for the iterative selection cycles.

In this paper, we proposed a two-phase approach that takes into

account both high-class imbalance and the scale of the input data

space. Specifically, our approach employs two active learners in a

tiered fashion - first phase active learner efficiently learns a domain

classifier (a filter function) defined on the entire input space and

second learner tries to efficiently learn final ML classifier defined

on the output of filter. The second-phase selects informative in-

stances from a smaller pool of unlabeled examples which doesn’t

require operating on the full dataset. The proposed method allows

active learning to be applied to large datasets with class skew. The

two-phases are interleaved (rather than isolated) and allow for a

bi-directional flow of information. The combined two-phase learner

progressively expands knowledge of input data space and uses suc-

cessive first phase and second phase strategies to switch between

learning the decision boundary and expanding domain boundary.

Given labeled data at certain iteration, the second-phase focuses on

exploiting the decision boundary (up to a performance threshold)

and then, first-phase focuses on exploiting given information to

intelligently search and expand the domain. We demonstrate the

effectiveness of our strategy for product classification on sample

of Amazon catalog dataset. Our results show that the proposed
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method achieves a fast solution with competitive performance in

extreme imbalanced setting.
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1 INTRODUCTION
Classification is supervised machine learning method that relies

on collecting labeled dataset for classifying unseen examples. In

practice, classification tasks are presented with a large pool of

unlabeled data and labeling the full set can be impossible due to

annotation costs. Several strategies have been proposed to optimize

the selection of the most relevant examples for labeling, a process

referred to as active learning.

1.1 Challenge of data scale and skew
Machine learning applications at Amazon have several additional

challenges than classical textbook cases. We often tackle with large

scale data as the number of products aka ASINs (ASIN: Amazon

Standard Identification Number) go well beyond billions. The Ama-

zon catalog is steadily growing as expected due to addition of new

items by sellers, introduction of new marketplaces etc. Amazon

data is found to be skewed in many dimensions. For binary ASIN

classification tasks, data can be heavily skewed (positive data can

be orders of magnitude smaller than the negative data). A skewed

classification dataset is one in which there are many more samples

of one class (called majority class) than the other class (called mi-

nority class). This is a common scenario in many other real-world

applications (like fraud detection) where minority examples (fraud

cases for fraud detection) are rare and sparse compared to major-

ity examples which are abundant. Basic approaches like uniform

sampling do not guarantee coverage of regions of interest that are

interesting for drawing the classification boundary. Due to class

imbalance, it can be difficult even for active learning (AL) to collect

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456


Woodstock ’18, June 03–05, 2018, Woodstock, NY Gupta and Gokalp

samples of minority class which are necessary for learning the clas-

sifier. Traditional strategies like random sampling or even Active

learning strategies can be ineffective or fail completely [19], [20].

The scale of data presents the second challenge to active learning.

Active learning strategies operate over a fixed domain space and

pick examples from the domain space to refine the classifier. If the

domain space is too large, it can be expensive to execute the classi-

fier on the whole space. Most previous active learning literature is

indeed performed on small or moderate-scale datasets [18], [3].

1.2 High-skew active learning
In cases with extreme class imbalance, traditional active learning

strategies can fail to locate minority examples. To address this

challenge, information retrieval systems have been suggested. [19],

[20] have proposed guided learning (i.e. “search" based technique)

where the annotator is tasked with finding class-specific instances.

Guided learning can be effective in quickly finding minority exam-

ples while active learning strategies can fail. In addition, a hybrid

strategy that employs both search and active labeling outperforms

either standalone approach. In text classification, it is convenient

to use keyword searches to query for examples. Even in image

classification problems with high-skew, extending active learning

algorithms with keyword searches have been shown to improve

performance [22]. Theoretical analysis has also shown the power

of adding a search component into active learning [21].

1.3 High-skew Machine Learning
Another consideration is that given an imbalanced dataset, we

want to learn from such dataset with high predictive performance.

Cascades and related techniques use the idea of multiple classifiers

to focus on the region of interest. Sculley et al. [23] use a series

of models to find adversarial ads - a high-recall coarse model that

rejects part of data space, followed by a finely grained models

were used to detect positive data (adversarial class). They find

that using cascade model leads to significant improvements in

performance. Yih et. al. [24] similarly use a two-phase approach to

email-spam filter models. Figure 1 from [24] illustrates how a two-

phase approach can learn a more complex (and accurate) decision

boundary for data which is not linearly separable in the original

data space.

In this paper we address the challenges in active learning for

imbalanced data classification in large datasets. In our setting, ex-

amples are organized into groupings called indices or buckets. Each
index can contain any number of examples and occupies a region

of space. To motivate the notion of index lets consider sentence

sentiment classification. In sentence classification, sentences are

examples and they are grouped at paragraph-level. In this case,

“paragraph" can be an index. Section 2.1.1 describes index examples

from Amazon catalog. The basic idea of the two-phase approach is

to breakdown the learning (active learning and classification) into

two phases. In the first-phase, a novel active learner is employed to

collect labels for these “indices" and discover positive indices. The

first phase employs an initial seed search query to gather the “first"

positive index. Examples from list of indices labeled positive form

the domain set and define the domain boundary. The first-phase

essentially rejects all negative labeled indices (parts of input space)

Figure 1: Illustration of the Two-Stage Filtering Approach:
Squares and Crosses represent positive and negative exam-
ples, respectively. Figure reproduced from [24]

and only allows positive labeled parts to enter second-phase. In

the second-phase, a traditional active learner is employed within

the domain set to collect labels for examples and refine the deci-

sion boundary for machine learning classification. The first-phase

classifier is a coarse-model intended to capture positive data with

high-recall and the second-phase classifier works on improving pre-

cision of the domain set. During an active learning session, the two

classifiers complement each other and relay information to each

other. When the second-phase classifier updates, the first-phase

active learner searches outward to discover candidate indexes that

are likely False-Negatives (FNs). When the first-phase classifier

updates and adds new indices, second-phase classifier focuses on

improving precision on new domain set.

Our approach differs from existing ones in several aspects. Firstly,

two complementary classifiers are employed to collectively sample

most informative instances. The two-phases distribute the burden

of optimizing for recall (first-phase) and precision (second-phase).

Our algorithm switches between the two strategies to progressively

improve knowledge of input space by refining the decision bound-

ary and expanding the domain. Secondly, the two-phase classifier

doesn’t need to classify all examples and only requires a search func-

tionality over the full input space. This is in contrast to traditional

active learning which executes on full input space and becomes

computationally expensive for large datasets. Thirdly, while pre-

vious studies indicate that a two-phase (or “cascade") approach

can be used to improve the predictive performance of classifica-

tion on fully labeled imbalanced dataset, our paper utilizes the

two-phase framework to perform active learning and improve com-

putational performance (training/prediction speed) of the system.

Finally, while traditional active learning collects labels at instance

level which can be expensive, we collect labels at two levels of

granularity. In the first-phase, labels are collected at a coarse level
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of granularity to quickly explore the input space and identify the

domain-set.

The rest of this paper is organized as follows. First, we describe

the two-phase framework and introduce the key components. Then,

we describe our experiments to evaluate our approaches on two

data sets in the Amazon Global Trade Services and Direct Import

Products domain. Finally, we discuss the results of our experiments.

2 TWO-PHASE LEARNING

Figure 2: Two-phase learning cycle

We now describe our new method, two-phase learning and in-

troduce its key components. The basic idea is to breakdown the

problem of building quality classifier from a highly-skewed large

dataset into phases. In phase-I, the goal of the system is to query

samples to build a high-recall coarse model that defines the domain

space (boundary). A key component of phase-I is the index model.

The large volume of input space is sliced into a smaller number

of indices. These indices have several properties as discussed in

2.1. It is actually the indices rather than the individual examples

that are labeled in phase-I. List of positive labeled indices is the do-

main classification which defines the domain space for traditional

active learning. This model rejects part of the large input space. In

the phase-II, system uses traditional AL strategies on the smaller

subspace to find and refine the final classification model boundary.

The two-phase system leverages two active-learning cycles, one

for each phase of the two-phase classifier. During active learning,

the system leverages a keyword-search API, a hash-map that can

provide examples present in an index, a list of indices that define

the working domain set for phase-II, a binary classification model

and its predictions. The learning process starts with an initial “seed-

search" query (based on class rationale) to retrieve a sample of

positive examples. The seed search query can be the class name.

For example, “cigar” can be a seed search to identify “cigars” in the

catalog. These examples are naturally distributed across various

indices. The relevance AL ranker ranks the unlabeled indices by

relevance i.e. dominance in the relevant examples. For example, to

identify “cigar" in Amazon catalog a keyword-search for “cigar"

may return 1000 examples which may belong to different indices

𝑖1, 𝑖2, 𝑖3 ranked by relevance{𝑖1 : 700, 𝑖2 : 200, 𝑖3 : 100}. The system
iteratively presents a sample of examples from most relevant index

(𝑖1 followed by 𝑖2 and so on) to acquire index labels. Once an index is

Algorithm 1 Active Two-Phase Learning Algorithm

1: 𝑏: batch size

2: 𝐼 : set of all candidate indices

3: 𝑈𝐼 : pool of unlabeled indices

4: 𝐼𝑝 = ∅: pool of indices labeled positive

5: 𝐼𝑛 = ∅: pool of indices labeled negative

6: D𝑖𝑛 : set of all examples inside domain boundary defined by 𝐼𝑝
7: D𝑜𝑢𝑡 = D −D𝑖𝑛 : set of all examples outside domain boundary

8: 𝐿 = ∅: pool of labeled examples in domain D𝑖𝑛

9: 𝑈 = ∅: pool of unlabeled examples in domain D𝑖𝑛

10: 𝑀 = ∅: model trained on labeled examples

11: 𝑝𝑟𝑜𝑏𝑠 : model𝑀 predicted class-probabilities for examples

12: repeat
13: while phase-I stopping criterion is not met do
14: # Phase I: Domain Classifier
15: 𝑞 search query

16: select top index 𝑖 using first-phase AL strategy

𝑠𝑒𝑙𝑒𝑐𝑡𝑇𝑜𝑝𝐼𝑛𝑑𝑒𝑥 (𝑞,𝑀, 𝐼𝑝 , 𝑝𝑟𝑜𝑏𝑠,𝑈𝐼 ) # Alg. 2
17: select 𝐾 examples from index 𝑖 for human review

18: if one positive example is found then
19: index 𝑖 is labeled positive and added to positive labeled

indices 𝐼𝑝
20: retrieve examples from index 𝑖 and add them to domain

set D𝑖𝑛

21: else
22: add index 𝑖 to 𝐼𝑛
23: end if
24: 𝑈𝐼 = 𝑈𝐼 − 𝑖
25: end while
26: while phase-II stopping criterion is not met do
27: # Phase II: Final Classifier
28: rank examples from𝑈 = D𝑖𝑛 −𝐿 using selection strategy

29: label 𝑏 examples and add them to 𝐿

30: train the learner on 𝐿 and execute on D𝑖𝑛

31: populate 𝑝𝑟𝑜𝑏𝑠 for a tiny fraction 𝜖 of examples in un-

charted space D𝑜𝑢𝑡

32: end while
33: Switch to Phase I

34: until both criterion are met

labeled positive, that index is added to the domain classification and

all examples in that index are added to domain-set D𝑖𝑛 . Once an

index is labeled negative, phase-I AL eliminates the negative-index

for further exploration. The system exploits information received

so far to continue to find relevant or recommended indices (see

section 2.1.2 for details on rankers and Algorithm 2) and collect

labels for these indices. The system also auto-populates search

queries to help locate positive examples (hence, indices) and ease

the burden on annotator. After new positive indices are labeled, they

are used to extend the domain classification and positive indices

continue to add new regions to the domain space. The domain

classification continues to enhance knowledge of the input space at

a coarse-level, and enables smarter exploration of unlabeled indices.

For example, the neighborhood ranker ranks unlabeled indices by

“closeness" to existing positive indices. The goal of phase-I is to find
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a coarse domain boundary in a input data space sliced at index-

level granularity such that the domain contains as many positive

examples as possible. The phase-I active learning loop continues

until no more relevant indices can found.

While phase-I reveals part of input-space that contains positive

data with high-recall, such an approach is likely include a lot of

negative data in the domain space. Phase-II trains a binary classifier

within this subspace to improve performance of final classification.

Phase-II active learning focuses on region near the final classifica-

tion decision boundary and iteratively refines it (up to convergence

criteria). Phase-II classifier can also unveil promising candidate

indices in unexplored region of input space based on location of

those indices in decision space. Phase-II combined with Phase-I con-

tinue to refine the final decision boundary and expand the domain

boundary until improvements stop happening.

Algorithm 1 summarizes our proposed method and figure 2 vi-

sualizes the dual active-learning cycles. In following sections, we

dive deeper into some key components.

2.1 Phase I: Active Index Learning for Domain
Classification

The goal of Active Index Learning is to perform high-recall retrieval

i.e. sample as much from the minority class as possible. In our

setting, examples are naturally organized into tight groupings called

indices or buckets and it is the indices, instead of individual examples,

that are labeled in Phase I. An index mapping F is defined for

any point 𝑥 in input space X which maps elements in input space

F ∈ X → I to a bucket 𝑖 ∈ I. The domain classifier is a functionℎ :

I ∈ R → {−1, 0, 1} that evaluates an index 𝑖 ∈ I in the input data

space. We want to find all possible indices where ℎ(F (𝑥)) = 1 i.e.

filter list of indices to keep ones with positive label. This approach

is motivated by the fact that given an input space with a large

volume, for space exploration, it may be cheaper to acquire labels

at coarse index-level of granularity rather than directly acquire

example labels. For example, an input space with 10MM examples

bucketed across 10 indices will require only 10 index-labels. The

labels provided for the index may not be appropriate at the example-

level of granularity but still provide a coarse understanding of space.

An index 𝑖 satisfies several properties. First, index stores a list of

examples and hence, represents a region of input space. Second, we

assume that every example in a index labeled negative is actually

negative, whereas at least one instance in a index labeled positive is

actually positive. This means that once an index is labeled positive

all examples within the index are included for Phase-II. On the

other hand, if an index is labeled negative, all examples within

the index are eliminated. Collectively all indices labeled positive

defined the domain space. Third, each index has a neighborhood

map. Given an index 𝑖 from a list of indices I, the neighborhood
𝑁 [𝑖] of 𝑖 is a subset of indices from I. This mapping allows phase-I

AL to explore surrounding regions and expand the domain space.

For example, given an input space with 10 examples {𝑥𝑖 }10
1

∈ X
and 10 examples bucketed across 4 indices s.t. {𝑖1 : [𝑥1, 𝑥2, 𝑥4], 𝑖2 :
[𝑥3, 𝑥5, 𝑥6], 𝑖3 : [𝑥7, 𝑥8], 𝑖4 : [𝑥9, 𝑥10]} with a neighborhood map

{𝑖1 : [𝑖2, 𝑖4], 𝑖2 : [𝑖1], 𝑖3 : []}, if 𝑖1, 𝑖3 have been labeled positive the

domain D𝑖𝑛 contains all examples present in positive-indices 𝑖1, 𝑖3

i.e. D𝑖𝑛 = [𝑥1, 𝑥2, 𝑥4, 𝑥7, 𝑥8]. Illustrative examples of indices and

neighborhood maps are provided in next section.

2.1.1 Indexing techniques. Amazon catalog can be indexed with

respect to various dimensions including keywords in key textual at-

tributes, various other key attributes and any additional calculated

values we introduce. We can create hashing mechanisms ranging

from completely data agnostic and cheap to data aware and expen-

sive.

Locality-sensitive hashing (LSH), for example, reduces the di-

mensionality of high-dimensional data. LSH ensures that (1) similar

products map to the same buckets with high probability, and (2)

similarity between two ASINs can be estimated based on similarity

of their hash values. LSH is very cheap to fit and predict, however

may have a very unbalanced data separation. This may be addressed

through more complex clustering solutions with an added cost of

execution.

k-nearest neighbor maps can be created for each index key. Some

indexing mechanisms like LSH inherently provides kNN maps for

free, while some others require analysis. For example, we can build

language models to discover the neighbors of “bag" keyword are

“tote", “purse", and “container". Similarly, graph distance can be used

for object type to discover the neighbors. For example, neighbors

of object type “scented candles" are “jar candles" and “pillars."

2.1.2 Ranker Types. Active learning in phase-I employs several

rankers that utilize existing information (domain) to explore the

unexplored input space and find new relevant and promising in-

dices (i.e. regions of space) to expand the domain (and increase

recall). This includes finding indices which are surrounding current

domain (i.e. indices) and indices which are likely to contain positive

examples based on phase-II machine learning model feedback. Al-

gorithm 2 highlights these rankers in action during phase-I active

learning.

Relevant Indices Finding positive examples is difficult in high-

skew domains. This ranker queries indices that are dominant in

annotator’s search queries.

Probe Neighbouring Indices This ranker queries indices that
are closest to the list of already labeled positive indices. This ranker

is based on the assumption that similar inputs should have similar

outputs. The AL goal is to generate queries be informative and

also close to where we started identify positive examples, since

deviating too far from initial region is less likely to return similar

examples.

Probe Positive Predicted Indices Finding positive examples

is difficult in high-skew domains. This ranker queries indices that

the current phase-II classifier predicts as positive. We expect that

this simple approach can find positive examples and improve recall.

To surface positive-predicted indices we maintain a tiny sampling 𝜖

of unlabeled indices and model’s predictions. Predictions for index-

samples can help surface indices with high concentration of positive

examples. In addition to simplicity, this approach does not require

additional training cost and little prediction cost.

2.1.3 Recommended Search. To conduct a comprehensive explo-

ration of data space and discover new regions, it is necessary to try

alternative search queries that can locate minority class examples.

For example, for identifying “candles" in Amazon catalog, user may
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Algorithm 2 𝑠𝑒𝑙𝑒𝑐𝑡𝑇𝑜𝑝𝐼𝑛𝑑𝑒𝑥 (𝑞,𝑀, 𝐼𝑝 , 𝑝𝑟𝑜𝑏𝑠,𝑈𝐼 )
Phase I Selection Strategy

1: S: Search
2: if 𝑞 == ∅ then
3: # Discovery
4: Toss a coin 𝑢 ∼ 𝑈𝑛𝑖 𝑓 (0, 1)
5: if 𝑢 < 𝑤1 then
6: rank unlabeled indices by neighborhood to already labeled

positive indices 𝐼𝑝
7: else if 𝑤1 < 𝑢 < 𝑤2 then
8: rank indices using 𝑝𝑟𝑜𝑏𝑠 to find most positive-predicted

unlabeled indices

9: else
10: populate 𝑞 with a recommended search query

11: end if
12: else
13: # Relevance
14: retrieve relevant docs for 𝑞 using search S
15: use final model𝑀 predicted probability scores (if available)

to weight the relevant docs

16: aggregate relevant documents by index and compute

relevance-scores for each index

17: rank unlabeled indices by relevance-score

18: end if
19: return top ranking unlabeled index

want to search for “tealights" or “candleholders." It can be strenuous

for the user to construct variations of queries. Several approaches

can be used to suggest search-terms. Firstly, term tf-idf scores can

be computed for samples in positive indices and terms with high

importance can be recommended. Secondly, synonyms of initial

search term and calculated terms can expand the search set while

maintaining closeness to initial region. Finally, positive predictive

text features from phase-II model can also be used to recommend

terms.

2.2 Phase II: Active learning for Final
Classification

The second phase active learner is allowed to selectively query

unlabeled instances from positive indices (or buckets). Pool-active

learning starts with a pool of unlabeled examples and builds a rank-

ing on the unlabeled set to select a set of samples to be labeled. The

two most popular selection strategies used for text classification

are uncertainty-based sampling (US) [10] and query-by-committee

(QBC) [5] [6]. The main point of differentiation among various

algorithms is the approach to quantify the informativeness (or con-

fusion) of an unlabeled example. Other approaches include expected

model change [1], expected error reduction [2] or variance reducing

strategies to query unlabeled examples. A practical evaluation of

these approaches on several datasets [3] indicates that variance and

log-loss are best-performing. However, these have a disadvantage

of being computationally and memory intensive. QBC and US are

common practical choices for scalable systems as they require less

memory and computational resources. For a detailed overview of

active learning algorithms, see [18].

2.3 Stop Criteria
In first-phase, users are probed with relevant or interesting indices

of examples to increase recall. Active learning for first-phase can

be concluded when no new positive index values can be generated.

In second-phase, new labels are requested to improve the per-

formance of the classifier. When the performance of the classifier

converges, Active learning for second-phase can be stopped.

Figure 3: Illustrative Example of Two-phase Active learning
Approach to identify “Candles". Amazon catalog is indexed
with respect to object type and several indices have been la-
beled (+) green and (-)red. At given iteration, the domain is
defined by positive labeled indices 𝐼𝑝 = [‘scented-candles’,
’tealights’]. ASINs within these indices form the domain
set D𝑖𝑛 for second-phase AL. For first-phase AL, currently
’candle-holders’ is top-recommended index per neighbor-
hood ranker and ’birthday-candles’ is top-recommended in-
dex per positive-predicted ranker. Neighborhood tries to ex-
plore regions of space around existing domain boundary
rather than searching large volume of input space. Positive-
predicted ranker exploits existing decision boundary to find
new regions in unexplored space that may contain positive-
indices. Second-phase AL samples near the decision bound-
ary via traditional AL.

3 EXPERIMENTS
We conduct experiments to compare performance of proposed strat-

egy AL(dual-phase) with traditional active learning method. The

results show that proposed method leads to faster active learning

with gains in predictive performance.

3.1 Datasets
In our experiments, we use a 10MM sample of Amazon catalog as

the dataset. Data is organized into indices using object type. There

are total 25K indices present in the dataset. Dataset is individually

annotated for two binary classification tasks - a Trade program

class for identifying Category A and a DIPC programs class for

identifying Category B.

We created semi-synthetic datasets for ASIN classification using

the sample of catalog as the base. Several techniques including a

rule-based classifier and machine-learning based classifier were
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used to help collect positive ground truth data (which is orders of

magnitude smaller than negative data).

Category A (Global Trade Service Class) Positive data pro-
portion is 0.043% (i.e. ∼ 2000:1 skew)

CategoryB (Direct Import ProductsComplianceClass) Pos-
itive data proportion for this dataset is 0.026% (i.e ∼ 5000:1 skew)

3.2 Other Considerations
Feature Engineering The ASIN texts are processed with stem-

ming, stop-word removal, normalization and vectorized into nu-

merical vectors. n-grams extracted out of text features. A classifier

can simply use bag-of-words (term-frequency), or normalize values

and calculate tf-idf (term-frequency * inverse-document-frequency).

1-hot encoding for categorical features where each value is repre-

sented by a column with normalization (lower-case, accent removal,

etc.).

Train-test split A random 80-20 split of data is performed and

80% is used for training. Remaining 20% is used as test data for

evaluation.

Search and Inverted Index For providing search functionality

and recommended search term to user we create an inverted index

using all the documents provided by user during training. This

inverted index is a matrix of𝑚 × 𝑛, where𝑚 represents number of

terms generated using all documents and 𝑛 represents number of

documents. So, matrix will have value 1 at𝑚[𝑥] [𝑦] if 𝑡𝑒𝑟𝑚[𝑥] is
present in 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 [𝑦] else 0.

3.3 AL Algorithm
For phase-I active learning, we leverage object type as index. Object

type is available for ASINs in US marketplace and naturally has

a neighborhood definition where graph distance can be used for

object type to discover the neighbors. For example, neighbors of

“scented candles” are “jar candles” and “pillars." In one experiment,

we also leverage KW-based index. For phase-II active learning, we

leverage QBC as the technique to find uncertain instances for final

classifier. Logistic Regression is used as the algorithm for final

classifier.

The proposed technique is compared against an active learning

baseline (QBC) on full dataset. This is the tradition or “single-phase"

version of Active learning.

With random sampling, instances are selected from the entire

pool of unlabeled data and therefore, due to the high-skew ran-

dom sampling fails to sample even 1 positive example within 2K

instances (for Category A dataset) and 5K instances (for Category

B dataset). Initial seed data is provided for both techniques. For

dual-phase learner, a seed search term is used to surface initial

positive data. For single-phase learner, 15 initial positive examples

are explicitly provided through search.

3.4 Acceptance Criteria
For our application, it is mandatory that data is classified at a cer-

tain precision level. Specifically, a PPV (positive predictive value)

constraint is placed for accepting positive classifications and NPV

(negative predictive value) constraint for negative classifications.

So, instead of a single threshold that dichotomizes the population,

we end up with two cutoffs. The class acceptance-cutoff 𝑢 is chosen

to identify class products with acceptable-certainty (i.e. PPV aka

Precision) and class rejection-cutoff 𝑙 is chosen to identify “not-

class" products with acceptable-certainty (i.e. NPV). The threshold

𝑢 is optimized using a validation set such that the 95% confidence in-

terval (approximated using Wilson’s method) for precision is above

target-precision. Similarly, the threshold 𝑙 is optimized for target-

NPV. If there are multiple thresholds satisfying both constraints,

threshold which maximizes f1-score is chosen. For ASINs with

probability-score 𝑝 between the two cutoffs, uncertainty exists, and

prediction of class membership is “unknown" and left for human

review. The construction of this “grey-zone" implies three possible

classification responses - “negative", “positive" or “unknown":

𝑐𝑙𝑎𝑠𝑠 =


+1, if 1 ≥ 𝑝 ≥ 𝑢
−1, if 0 ≤ 𝑝 ≤ 𝑙
0, otherwise

(1)

Given𝑁 instances, the fraction of data classified (relative to number

of all available examples in dataset) is also known as coverage [7],

[8]. The coverage constraint for launch is set at 95% for all sessions.

3.5 Evaluation Metric
Classification accuracy is not a good metric to evaluate classifiers in

applications with class imbalance problem. Considering an imbal-

ance ratio of 99 to 1, a classifier classifies everything negative will

achieve an accuracy of 99% but of no practical use. We evaluate two

measures to compare the selection strategies numerically: labeling

effort and area under PR curve (AUC-PR).

Precision-recall (PR) curve displays relationship between preci-

sion and recall at all possible thresholds for binary classification.

Area under PR curve (AUC-PR) is commonly used for performance

evaluation in imbalanced data classification and shows the effec-

tiveness of model.

Active learning aims at keeping the number of labeled samples

as low as possible. The labeling effort is then the minimum number

of samples needed by each of the other strategies before stopping.

This measure indicates how efficiently a selection strategy uses the

data.

4 RESULTS
In this section, we will study the performance of proposed “dual-

phase" strategy and compare against the traditional “single-phase"

AL baseline.

Active learning strategies focus on instances that are close to the

decision boundary and confusing to the classifier. Therefore, imbal-

ance ratio of samples collected via active learning is much smaller

than imbalance ratio of entire dataset. Tables 1, 2 confirm that active

learning approaches ends up with a more balanced labeled data

distribution than entire dataset. Dual-phase approach ends up with

nearly-perfectly balanced labeled data distribution compared to

single-phase approach with a positive proportion of 46.6% (i.e. 527

positive samples out of 1130 active collected sample) vs 13.5% for

Category B dataset at 1130 labels and 57.5% vs 6.8% for Category

A dataset at 1628 labels. This demonstrates the effectiveness of

dual-phase approach in locating minority class examples.
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Table 1: Performance for Category B with precision con-
straint = 86% (*stop criteria not met)

Metric Dual-Phase Single-Phase

Labels 1130 1130*

Positive Labels (Ratio) 527 (46.6%) 152 (13.5%)

Precision 93.93% 0%

Recall 96.67% 0%

AUC-PR 96.79% 77.57%

Table 2: Performance for Category A with precision con-
straint = 95% (*stop criteria not met)

Metric Dual-Phase Single-Phase

Labels 1628 1628*

Positive Labels (Ratio) 936 (57.5%) 111 (6.8%)

Precision 95.3% 0%

Recall 93.96% 0%

AUC-PR 96.78% 57.97%

Figure 4 shows the evolution of learning curve for dual-phase

active learning experiments. The curve highlights the domain ex-

pansion as more and more positive indices are found. The curve

also highlights the successive Phase-I and Phase-II loops during

the session. AUC-PR curve shows that the performance of the final

“dual-phase" classification improves over the course of a session.

Figure 5 shows the evolution of learning curves for single-phase

active learning and how it pits against dual-phase learning. The

dual-phase AL session is stopped at 1130 labels for Category B and

1628 labels for Category A. Table 1, 2 show the test performance of

ML model trained on actively sampled labels. Single-phase learner

performs poorly compared to dual-phase learners as measured by

AUC-PR (77.57% vs 96.79% for Category B and 57.97% vs 96.78% for

Category A) and single-phase learners fail to reach the acceptance

criteria.

From computational performance perspective, benchmarking

shows that AL(dual-phase) is orders ofmagnitude faster thanAL(baseline)

with dual-phase learner predicting only on a fraction of the full

dataset. This fraction keeps increasing as shown in Figure 4. For Cat-

egory B, dual-phase learner only predicts on 0.12% of the data with

prediction time of 0.013s while single-phase learner predicts 100%

of data in 3.04s. For Category A, dual-phase learner only predicts on

0.07% of data with prediction time of 0.07s vs single-phase learner

predicts on 100% of data with prediction time of 3.05s. While our

strategy predicts only a portion of instances of dataset, it achieves

higher prediction performance than the baseline that processed all

instances.

4.1 Comparison of indexing mechanisms
Table 3 shows comparison of performance when using a KW-based

index vs an object type index for the Category B class. KW-index

leads to much looser groupings of ASINs. At individual index level,

each KW-index can add much higher-recall at the cost of low-

precision. Therefore, first-phase classifier only requires a handful

of KW-indices compared to object type-indices to recover most

positive examples. However, KW-index leads to a ∼ 3x bigger do-

main size and hence, requires processing more data and patterns.

The AUC-PR comparison shows superior performance using object

type index.

Table 3: Performance for Category B with precision con-
straint = 86% (*stop criteria not met)

KPI Object Type Index KW Index

Index Labels (Domain Size) 58 (0.12%) 3 (0.33%)

Domain Precision 21.92% 1.35%

Labels 1130 1130*

Positive Labels (ratio) 527 (46.6%) 450 (39.8%)

AUC-PR 96.79% 85.65%

5 CONCLUSIONS
The two-phase learning framework breaks down the the problem

of active learning into two phases of identifying a coarse domain

boundary in phase-I and refining a fine decision boundary within

the domain in phase-II. Traditional active learning while computa-

tionally expensive to apply on a large datasets can be applicable to

a smaller subspace via two-phase framework. The active learning

method proposed actively focuses on locating minority examples

in phase-I. Experimental results indicate that two-phase learning is

able to indeed achieve more balanced distribution of labeled data.

In phase-II, a traditional AL can be employed to refine the decision

boundary in domain and improve classification performance. By

successively switching between phase-I and phase-II, more regions

of space are added into domain and refined by final classifier. Ex-

periments reveal that dual-phase active learning achieves a 20-40%

improvement in AUC-PR over traditional active learning.

In future work, we plan to optimize the components of the two-

phase learner. We have identified several promising directions for

investigation including leveraging multiple indices to vary index

granularity and explore additional rankers for phase-I domain ex-

pansion.
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