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ABSTRACT

Intelligent Voice Assistant (IVA) systems, such as Alexa, Google
Assistant and Siri, allow us to interact with them using just the voice
commands. IVAs can elicit voice feedback directly from the users
and use their responses to improve the various components of IVAs.
One concern with using such crowdsourced voice feedback (CVF)
data is the reliability of feedback itself such as background noise or
disingenuous feedback. In this paper, we propose ways to establish
confidence scores to indicate the reliability of the CVF data. We
build a probabilistic Bayesian Belief Network (BBN) model, which
uses the CVF data as training dataset. Since human annotation of
the CVF data can be expensive, we explore ways to evaluate such a
model without human labeled data. We propose several metrics that
(i) do not need any ground-truth, (ii) can be simply computed using
the CVF data, and (iii) can reliably measure the model performance
to output confidence scores indicating reliability.

CCS CONCEPTS

» Mathematics of computing — Bayesian networks; « Com-
puting methodologies — Model verification and validation;
Uncertainty quantification; Bayesian network models.

KEYWORDS

intelligent voice assistant, crowdsourced voice feedback, Bayesian
belief network, ground-truth data, feedback reliability

ACM Reference Format:

Aashish Jain and Sudeeksha Murari. 2021. Establishing Reliability in Crowd-
sourced Voice Feedback (CVF) and Evaluating the Reliability in the Ab-
sence of Ground-Truth. In Proceedings of Data-Efficient Machine Learn-
ing Workshop at KDD (DeMaL’21). ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In order to collect feedback on specific aspects of an intelligent
Voice Assistant (IVA), a system like Crowdsourced Voice Feedback
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(CVF) can be valuable. CVF is a system that can target specific
interactions based on domain/intent, device type or other aspects
of a request made to an IVA. Typically, when a user makes a request
to an IVA, the IVA responds with an action or with a response.
The user is then asked a question by CVF about the interaction
to gauge if the IVA rendered a satisfactory response/action. These
CVF questions can be generic or very specific to the interaction,
and users’ responses are recorded and used to improve the IVA. An
example of such an interaction, along with the CVF question can
be seen in Fig. 1. Other than binary questions, there are numeric

user’s original utterance

IVA’s response

IVA’s feedback
e question

Yes, thank you!

user’s feedback utteranc

Figure 1: An example of a user-IVA interaction

feedback questions as well, such as “how did I do on a scale of 1-5?".
The users’ typical responses to CVF can be broadly categorized as
yes, no, maybe, silence or some numeric response. Annoyed users
also say things like “shut up” or “go away" or completely ignore
the CVF question and ask for something else. In this work, we
only focus on the binary questions and responses are assigned a
feedback type of yes, no and other. In the example shown in Fig. 1,
the feedback type of the response is yes. The other feedback type
contains several scenarios such as when a user (i) provides uncertain
feedback (“maybe" or “I don’t know") (ii) provides the feedback in a
noisy background such that the feedback cannot be understood, and
(iii) ignores the feedback question. In the Fig. 1, we also illustrate
what we refer to as original and feedback utterances, as shown on
the first and fourth lines, respectively.

In this paper, we propose to (i) use Bayesian Belief Network
(BBN) [20, 26] to establish the reliability of crowdsourced voice
feedback (CVF) data in a frugal manner without human annotated
training data, and (ii) evaluate CVF confidence detection model in
the absence of ground-truth data. The BBN model can also be used
to add interpretability to the model predictions by providing esti-
mates of marginal contributions of Automated Speech Recognition
(ASR), Natural Language Understanding (NLU) etc., towards the
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three feedback types for a given interaction. However, interpreta-
tion of the predictions is not the focus of this paper. This paper
focuses on the former, i.e. establishing reliability in CVF data and
evaluating model in the absence of the ground-truth data. In an IVA
system, millions of CVF data-points are collected each month. This
data is then used as training/testing data in models or to generate
health metrics around IVA performance. Often, there are concerns
on reliability of CVF data due to sarcastic responses or heavy back-
ground noise etc. To address this, a BBN model is used to predict
feedback type and confidence scores on user’s feedback. With a
continuous confidence score for each feedback, noisy data can be
filtered-out or reliable data can be filtered-in.

2 RELATED WORK AND OUR CONTRIBUTION

Any type of crowdsourced data comes with some level of noise
and there have been efforts in the past to clean the labels in crowd-
sourced data [6, 10], with the purpose to use them for training
supervised models. Another research area in dealing with noisy
labelled data, not just limited to crowdsourced data, is to estimate
the uncertainty in the labels so that more uncertain data points can
be kept separate from more confident data points, and there is a ded-
icated framework for that as well [24]. There is research on learning
with noisy data itself, for example using deep neural networks [7].
In all these areas, the focus has been mainly on training the model,
i.e. getting reliable training data with minimized noise and building
models that have minimal influence due to noise in the training
data. However, it is difficult to curate a reliable ground-truth data
set for model evaluations using these approaches. In the absence of
ground-truth data, it becomes challenging to compare models and
select the best one for deployment. There is an idea called reverse
testing [5], which does not rely on the ground-truth data. Another
idea is in the context of interpretable machine learning, where the
focus is on explanation, rather than prediction, and novel evaluation
methods were proposed in the absence of the ground-truth data
[36]. A more sustainable solution to evaluate models in the absence
of ground-truth data is to have a set of reliable success metrics,
and there exists work in which some metrics were proposed that
can be used in the absence of the ground-truth data, though only
for binary classification problems [11]. In these research attempts,
reliable labelled data sets were already present to train the model
in the first place. We do not find any research on dealing with
both issues (i.e. noisy crowdsourced data for training models and
absence of ground-truth for model evaluation) for crowdsourced
voice feedback domain.

We have the challenges of (i) not having reliable labelled data
to train the model to make predictions on both feedback type and
confidence scores on them, and (ii) not having the ground-truth data
to evaluate that model. Having dependence on the ground-truth
data is not desirable due to the cost of human annotations and risk
to user privacy. In our work, we introduce new metrics and also use
existing metrics, that can be computed using only the CVF data, and
do not require any ground-truth data. We propose to use these CVF
data based metrics to replace ground-truth data based metrics, used
in traditional supervised learning, like F1 or ROC AUC. In order to
show that these CVF data based metrics are reliable and can indeed
be good proxies for ground-truth based metrics (as if we had a
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ground-truth data set available), we curate a small human annotated
ground-truth data set to compare these metrics with ground-truth
data based metrics. Moreover, we also define some metrics, that
use both CVF data and ground-truth data, that can be used to
evaluate the predicted confidence scores in the voice feedback, as
opposed to only the feedback type prediction. This allows us to
establish confidence on model predicted confidence scores. To the
best of our knowledge, this is the first work to (i) build a BBN based
model using CVF data to predict feedback type and associated
confidence scores and (ii) present reliable metrics to measure the
performance of crowdsourced voice feedback confidence detection
model in the absence of ground-truth data. Last, we also present
hyper-parameters, used in building the BBN model, that can be
tuned to achieve optimal model performance for applications such
as this.

3 DATA

Usually, the IVAs use spoken language understanding (SLU) based
models [4, 18, 29] to detect domain, intent and slots, which are in
turn used to automatically tag user’s feedback types as yes, no or
other. Throughout this paper, we will refer to this as user feedback.
The confidence on the user feedback may depend on many factors
such as (i) feedback type determination by the SLU models (ii) users’
sentiment scores [19], (iii) SLU model hypothesis confidence scores
(iv) ASR model hypothesis confidence scores [16, 17, 22] and many
other run-time meta signals that are collected during the user-IVA
interaction. We use these signals to build a BBN based model in
this work. Note that we do not use any lexical based signals in this
work. For most of the signals, we use them corresponding to both
the original and the feedback utterance as illustrated in the example
shown in Fig. 1. All these signals in a single record, consisting of
both the original and the feedback utterances, forms one sample of
the CVF dataset.

We collected one month of CVF data from IVA users, where
users are not identifiable. From that data, we subsampled 8.5 X 100
samples (Dataset A). Each data sample consists of two utterances,
including the original and feedback utterance, as we illustrated in
Fig. 1 above. We split the CVF dataset into training and test sets,
leaving 7.5% 10° samples as the CVF training set and 1x10° samples
as the CVF test set.

To demonstrate that the newly designed metrics computed on
the CVF test set represent the true model performance, we study
correlations between CVF test set metrics and ground-truth data
based metrics. For this aspect of validating the metrics we propose,
we randomly select 3.1 x 103 CVF data samples from a different
time window than Dataset A. We annotate this smaller dataset to
generate the feedback type labels on each CVF data sample, and
refer to this as ground-truth test set.

4 METHODOLOGY

A CVF is useful in understanding whether a rendered experience
through an IVA was satisfactory or not. For this purpose, the feed-
back type represents the success or failure of an experience with
the IVA. We believe that a Bayesian Belief Network (BBN) is well
suited for not only producing confidence scores indicating the re-
liability of user feedback, but it also helps understand the factors
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that contribute to a user responding yes or no to a CVF question
like “did I play the correct song". This paper focuses on building a
BBN based model to establish reliability in the user feedback, and
more importantly on introducing metrics to measure the model
performance in the absence of ground-truth data. The BBN model
predicts the potential user response by generating outputs of prob-
abilities for each feedback type (yes, no, other). We then compare
the outputs with the actual responses provided by users to assess
confidence scores. For instance, if the model predicts yes with a
probability of 0.8 and the user responds “yes", our confidence in the
feedback response is 0.8. If our model predicts yes with a probability
of 0.7 and no with a probability of 0.3, and the user response is “no",
the confidence score is 0.3.

4.1 Bayesian Belief Network Model

A Bayesian belief network (BBN) is a directed acyclic graph (DAG)
based framework that is used to model the joint probability distribu-
tion P of a set of variables in a data set [20, 26]. The DAG is defined
as G = (V,E), with V representing a set of nodes or variables and
E C V x V representing edges in the network. The joint probability
distribution of all variables |V| is the set of parameters © in the
BBN, and so the BBN is represented as the pair (G, ©). This network
effectively captures the independence relationships between the
variables X = {Xj...Xn}, with graphical separation in G, which
also corresponds to the conditional independency in probability,
leading to the following factorization [20, 21]

P(X|G,0) = | | P(X,IlIx, Ox,), )
veV

where, ITx is the parent node of the variable X,,. Here, the joint
probability distribution of X (with parameters ©) can be thought
of as a multiplication of the local distribution of each variable X,
(with parameters @, ) conditional on each variable’s parents IIx, .
Note that for a node, there can be a single or multiple or even no
parents. The factorization (Eq. 1) is valid only when we do not have
any missing data.

Depending on whether the structure of the BBN is known or
unknown, and if the data is full or partial (i.e. with missing values),
there are four possible learning approaches [3]. In this work, we
learn the structure from the data, hence we use the unknown struc-
ture scenario. We also treat our data prior to training (see Sec. 4.2)
so that there is no missing values, and so our data is full. The BBN
model is learned using the data in two broad steps. In the first step,
the DAG structure G of the BBN is learned using the data, which
captures the dependence structure in the data.

Once, the structure learning is finished and we find G, the second
step is to learn the parameters ©, to finish learning the pair (G, ©),
i.e. the BBN . Usually, the parameters are learned either using
maximum likelihood or Bayes method [31].

4.2 Training

We first pre-process the CVF training data for learning the structure
and the parameters of the BBN. The BBN can be learned using data
that contains only discrete variables or only continuous variables
or mix of both. In this work, we use bnlearn [31, 32], a popular R
package for learning BBNs. This package supports continuous and
discrete BBNs but not the hybrid. Since feedback type is discrete,
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we transform all continuous variables into discrete variables, to
train a discrete BBN. The number of levels, n;, that each continuous
variable is discretized into discrete variable, is a hyper-parameter.
There are some missing values in some of the variables, and we
replace them with a unique level (e.g. “missing"), to make the data
full. We believe that a missing field can affect our confidence in
the user feedback and therefore treat missing values as a discrete
category in our training data. From a reliability perspective, missing
data are useful information in establishing confidence.

The pre-processed data is used to first learn the structure of the
BBN. We use various constraint-based [2, 9, 14, 23, 27, 33, 34, 37],
score-based [28] (using Bayesian Information Criterion (BIC) [30] as
scoring metric), hybrid [12, 14, 35] and local discovery [8] learning
algorithms to learn the structure. For each model, we generate five
network structures by applying nonparametric bootstrap to the
training data, and then compute the joint strength of all possible
edges. This bootstrapping procedure allows us to generate more
generic network structure. Finally, for the parameter learning, we
use the Bayes method.

4.3 Inferencing

We make all the probabilistic inferences using gRain package [15],
which allows to compute conditional probability of any variable
conditioned on any other set of variables, for a given sample. Unlike
bnlearn, which supports approximate inferencing, gRain package
supports exact inferencing. In our use-case, we want to compute the
probability of the feedback type variable XF, for all three feedback
types Xpt with t = {yes, no, other}, conditioned on the values of all
other variables. We define that conditional probability as P(Xp:|X'),
where, X’ is X1, ..X j,...XN with j # F. The conditional probability
is used as confidence score C! on feedback type t, in other words,

C! = P(Xp:|X); t € {yes, no, other}, 2)

with 3, C? = 1. We can also use argmax C? to predict the feedback
t

type t’, like a classification problem. Note that, to distinguish the
user feedback type from model predicted feedback type, we denote
them by t and t’, respectively. When the predicted feedback type
t’ (which is the one with the highest C?) is the same as the user
feedback response t, C! is retained as our confidence score on the
feedback received. If C! is a low number, it does not mean that
the user was incorrect, it means that based on the signals we use,
it is difficult to explain the feedback received, and therefore we
put lower confidence in that data point. These data points are not
readily usable and need additional inspection to understand the
feedback provided. Having model’s prediction of the feedback type,
and the confidence score on the user’s feedback type defined, we
next discuss the model evaluation methods in the next section.

5 MODEL EVALUATION METHODS

For model evaluation, we propose a combination of new and ex-
isting metrics that do not need ground-truth data, but only the
CVF data, and we call these CVF based metrics (MC). For validation
of the M€ metrics, we also compute traditional evaluation met-
rics (M) on a small human labeled ground-truth data, which was
curated only to show correlations between M® and M® metrics.
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5.1 CVF Based Metrics (M°)

We define 11 CVF based metrics and denote them using Ml.C, where
i = 1...11. These metrics are based on (i) BBN structure, (ii) agree-
ment between user’s feedback type t and model predicted feedback
type ¢/, and (iii) user’s sentiment scores. We summarize all the M©
metrics in Table 1, and explain them in detail below.

5.1.1  BBN Accuracy. There are information theory based metrics
such as Akaike Information Criterion (AIC) [1] and likelihood based
metrics such as BIC [30], that can be used to score how well the
BBN fits the data. These metrics are based on log likelihood of a
BBN given a dataset, and so the accuracy of the BBN depends on
the size of the data itself [13]. As a result, these metrics do not
provide the “absolute” accuracy but rather the “relative” accuracy
of a BBN for a given data set. An alternative approach to measure
the accuracy of a BBN was proposed [25], where the accuracy
was approximated as conditional independencies present in the
structure of the BBN. This alternate accuracy is called the Network
Conditional Independencies Mutual Information (NCIMI). The idea
behind this metric is to look at all relationships in the network
that are conditionally independent, and then compute the mutual
information (MI) dependency measure between the variables using
the data. The non-zero values of the MI tell us about the inaccuracies
in the model. The NCIMI is simply the summation of all possible
MIs in the network (computed only on conditionally independent
variable pairs). To perform model comparisons, we compute mean
statistics of NCIMI. Based on this NCIMI mean statistics, we define
two metrics: (i) Mlc = mean of NCIMI on the CVF test set, (ii) MZC
= median of NCIMI on the CVF test set. The smaller the values of
these metrics, the more accurate the BBN is.

5.1.2  Classification Accuracy Assuming User Feedback As Ground-
Truth. If we assume that the user’s feedback is totally reliable and
there is no noise (which is not the case), we can compute the agree-
ment between the user feedback type ¢ and the model predicted
feedback type t’. We compute accuracy to represent this agreement
and denote this metric as MSC . This metric represents the hypothesis
that the users that provide feedback are correct most of the time,
which was validated using a small sample annotation. This is not
used as a standalone metric to evaluate the model.

5.1.3 Extreme Sentiment Based Metrics. The speech sentiment
scores are computed on both the original and feedback utterance
using the sentiment score model [19], which generates three types
of sentiment scores: (i) activation, which captures if the user is
excited or calm, (ii) valence, which represents positive or negative
sentiment and (iii) satisfaction, which also measures the positive
or negative experience. We find that activation is quite uniformly
distributed across the feedback classes, however, satisfaction and
valence distributions are sensitive to feedback type. It was also
found in another study that the activation scores are not correlated
with customer satisfaction [19]. The idea behind extreme sentiment
based metrics is to assess what the model predicts when the sen-
timent scores are extreme. We posit that for extreme positive and
negative sentiment scores, user’s feedback type ¢ mostly should be
yes and no, respectively. Before defining extreme sentiment based
metrics, we first discuss how we subset the data to get the extreme
sentiment feedback test sets, both extreme negative sentiment (ENS)
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test set and extreme positive sentiment (EPS) test set. We consider
EPS test set feedback as those ones for which both the satisfaction
and the valence scores are greater than pg + kos and p, + koy, re-
spectively. Here, g and i, are the means and o5 and o, are the
standard deviations of satisfaction and valence, respectively. Simi-
larly, for ENS test set, we consider satisfaction and valence scores
to be smaller than yg — ko and py — koy, respectively. We use k = 3
in this work as that provides sufficiently large ENS and EPS test
set, while maintaining the sentiment extremeness, as found in an
internal study. Having setup the two test sets for EPS and ENS
feedback, we next define extreme sentiment based metrics.

Table 1: Summary of MC metrics. The hypothesis that a met-
ric should be higher or lower for a better model performance
is indicated by T and |, respectively, in the description.

MC Description

MC  NCIMI mean on CVF test set |

ME  NCIMI median on CVF test set |

MSE  Accuracy between £ and £’ |

M4C Mean of the confidence scores on yes class in ENS test set |
ng Recall of no class in ENS test set T

ME  Rate of false negatives due to yes class in ENS test set |
MS  Relative reduction in yes samples in ENS test set |

ME  Mean of the confidence scores on no class in EPS test set |
ME  Recall of yes class in EPS test set |

Ml(f; Rate of false negatives due to no class in EPS test set |
Mlc1 Relative reduction in no samples in EPS test set T

Extreme Negative Sentiment Based Metrics: In the extreme
negative sentiment (ENS) test set, we posit that the model would
generate lower confidence scores on the yes class and hence would
have lower C? for yes. To capture this, we define M4C = CY¢S(ENS)
as a metric to represent the mean of the confidence scores on the
yes class in the ENS test set, and we posit that it’s value should
be smaller for a better model. If we focus on the no class in the
ENS test set, then we can make some arguments that if the user
feedback type ¢ is no, then the model should also predict no. In other
words, if we consider t as reference and ¢’ as model hypothesis, the
false negatives should be much smaller for no. It is possible that
some of the no from users would be predicted as other feedback
types by the model but it is important that the model predicts
mainly no and other feedback types but not yes. It is fine if there
are some false positives for no, as model would be stealing from
other feedback types to no. Based on these arguments, the recall
of no class could be an important metric, and we denote that as
M5C = recall”(ENS) which should become higher as the model

gets better. Along with MSC , we can also keep track of how many

times the model predicted yes when the user feedback was no. We

c FNyeS
capture this information using Mg = —55- (ENS), which is the
n

n,no

ratio of the number of false negatives due to yes, FNY¢, to the total
number of no responded by users in ENS test set nl""°, and we
hypothesize that this metric’s value should be lower. The ENS test
set should have as small number of yes feedback as possible, so even

if the user’s feedback is yes, the model should predict no. We use

ng =100 x (ny¥® —nyY® ) /ny Y (ENS) to denote the relative
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reduction in the number of yes feedback, when going from ¢ to ¢/,

where n’Y** and n}’ Yes" are the number of yes feedback in ENS
test set as responded by users and predicted by model, respectively.
The value of this metric should be higher for better models.
Extreme Positive Sentiment Based Metrics: Similar to ENS
test set based four metrics, we define metrics MSC - Mlc1 for the
EPS test set, by simply switching the feedback polarity from yes
to no and vice versa. As a result, in the EPS test set, we have (i)
M8c = C"°(EPS) as the mean of the confidence scores on the no
class, (ii) M9C = recallY®*(EPS) as the recall of yes class, (iii) Mlco =

no
% (EPS) as the ratio of the number of false negatives due to

S

no, FN"9| to the total number of yes responded by users n‘f Y in
EPS test set, and (iv) Mlc1 =100 X (nf’no - nf’no )/nf’nO(EPS) as
the relative reduction in the number of no feedback, when going
from t to ¢/, where nf""° and nf""° are the number of no feedback
in the EPS test set as responded by users and predicted by model,
respectively. The values of metrics MSC and Mlc0 should be lower,
and values of metrics M9C and Mlc1 should be higher, for better
models.

5.2 Ground-Truth Based Metrics (M®)

Having human annotated ground-truth data with yes, no, other feed-
back type labels and the model predicted feedback type with confi-
dence scores (Eq. 2), we can compute several metrics to measure
the model performance. However, we emphasize that MG metrics
are generated only for establishing the efficacy of M€ metrics, as
stated in Sec. 5. The MC metrics are described in the Table 2. The

Table 2: List of ground-truth based metrics . The values of all
metrics should be higher for better model performance, as
indicated by T in the description.

MG Description

MC  Accuracy |
ME  Mean of precision across three feedback types |

MS  Mean of recall across three feedback types |

M4G Mean of F1 scores across three feedback types T

M5G Mean of ROC AUC across three feedback types T

MS  Mean of differences in confidence scores between ground-truth
label and ¢ T

MS  Mean of confidence scores on ground-truth label |

M For i = 1..4, computed between the ground-truth label and user
feedback type ¢ (rather than model predicted feedback type ¢’),
and hence is a constant number for each i

metrics MlG - M5G are well established, so we only elaborate M5G -

M7G in more detail. We use the model to get confidence scores on
both user’s feedback type t and ground-truth feedback type using
Eq. 2. For instance, if t is yes, we use the C? of yes as it’s confidence
score; if for the same sample, the ground-truth feedback type label
is no, the C of no produced by the model is it’s confidence score.
We expect that the confidence score generated by the model for the
ground-truth feedback type label, in general, should be greater than
that generated by the same model for the user provided feedback
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type t, as that way the model is closer to ground-truth than the
user feedback. Therefore, we can compute the difference between
the confidence scores on ground-truth label and ¢ for all samples in
the ground-truth test set, and the mean of those differences is what
we refer to as M6G . Higher value of this metric should correspond
to better model performance. We also assume that the mean of the
confidence scores on the ground-truth feedback type label, across
all samples, should be higher for better models, and this value is

represented by M7G . It is also important to mention that the metrics
MlG - Mf rely only on the feedback types, i.e. classification labels,
whereas M5G - M7G are computed using confidence scores.

6 RESULTS AND DISCUSSION

In the absence of the ground-truth data, we proposed several met-
rics under M€ in Sec.5.1 that can be used to evaluate model per-
formance. In order to show that MC metrics can be trusted, we
carry out correlation studies between MG and M€ metrics. A good
correlation would mean that some of M® metrics can indeed be
proxied by some of M€ metrics. To obtain correlations between
M€ and M® metrics, we build several models by varying three
hyper-parameters, to study the effect of them on the metrics in MG
and MC. These three hyper-parameters are: (i) the structure learn-
ing algorithms SLA, (ii) the number of levels n; that is used while
discretizing the continuous variables into categorical variables with
n; levels, and (iii) the number of samples in the training data ng. For
computing correlations, we look at the trends of different metrics
as function of all the models generated from varying those three
hyper-parameters.

Before computing correlations, we first look at the trends of
some of the MG metrics (since we already curated a small ground-

truth data set specifically for this work) for various models that
G
we built. Fig. 2 presents the results for M_(l;u for all models. Here,
1
i = 1..4 correspond to classification based metrics, and MiGu metric
is computed between ground-truth feedback type and user feed-
back type ¢, and so it is independent of the model choice. The first
panel in Fig. 2 shows the results by varying the structure learn-
ing algorithm (SLA) and the SLA Index 1..14 indicates the follow-
ing algorithms: {chow.1liu, fast.iamb, gs, h2pc, hc, iamb,
iamb.fdr, inter.iamb, mmhc, mmpc, pc.stable, rsmax2,
si.hiton.pc, tabu}, which are implemented in bnlearn [31, 32].
The variation with respect to the number of levels nj, used in dis-
cretizing the continuous variables to discrete variables, is shown
in the second panel, where we vary n; from 1..19. The third panel
displays the variations in the number of samples ng in the training
data set, where we vary it from 1 X 103 — 7.5 x 10°. In all three vari-
ations, we observe that none of those four MG metrics outperform
MS" metrics. This means that user’s feedback ¢ is more closer to

the ground-truth compared with model predicted feedback type ¢/,
G

1

are close
MG

although with minute differences as the values of

to 1. For classification purpose, the model may not eveln be needed,
however, the purpose of this work is to establish the confidence
scores on the user’s feedback which is not possible to get directly
from users.
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Figure 2: Results for normalized MiG, where i = 1..4, for all the models generated by varying three different hyper-parameters,
shown in three panels: (i) first panel: Structure learning algorithm (SLA) index with 14 SLAs (ii) second panel: number of levels
used while discretizing continuous variables to discrete variables, n; with values 1..19, and (iii) third panel: number of samples
in the training data set, ng with values 1 x 10° — 7.5 x 10°. Ml.Gu is computed between the ground-truth feedback type and the user

feedback type ¢, and is constant for each i.
Markers:0: (i=1),0:(i=2),A:(i=3),0:(i=4)

For the SLA variation experiment, we fix ny = 2 X 10° and
n; = 5. From the SLA variation experiment, we find that gs, iamb,
si.hiton.pc, which are constraint-based algorithms and rsmax2
which is a hybrid method, do not perform well for our problem, if
we consider MlG , MZG and Mf metrics. Depending on what metric
we consider, there are different best models. However, considering
the mean F1 score, i.e. Mf, iamb.fdr, inter.iamb, pc.stable,
which are constraint-based algorithms, hc, tabu, which are score-
based algorithms and h2pc, which is a hybrid algorithm, perform
well for our problem. To make the selection of the best SLA, we
look at the training time and we find the following training times in
AWS’s m5.24x1large EC2 instance: iamb. fdr: 140s, inter. iamb:
71s, pc.stable: 570s, hc: 92s, tabu: 120s and h2pc: 1,710s. As a
result, inter. iamb is the best choice for SLA. For the n; variation
experiment, we fix ng = 2 x 10® and SLA to be inter. iamb. We see
that the values of all four metrics increase initially, and then they
level-off with minor fluctuations, with elbow point around n; = 5.
Based on this observation, we pick n; = 5 in other experiments as
higher n; increases the computational burden. For the ng variation
experiment, we fix SLA to be inter.iamb, and find that all four
metrics do not change much with ng, except for data points around
ns = 1x 104,

Having discussed the results based on M® metrics, we now
present results on M€ metrics, and also look at the correlations.
Fig. 3 presents the patterns of these two normalized metrics as
a function of the model index in the top three panels. Here, the
model index 1...14 refers to all the SLAs, in the same order discussed
above for Fig. 2, and 15...33 model index refers to n; variations with
n; = 1...19, and the index 34...54 refers to ng variations with ng in
the range of 1 X 10% — 7.5 x 10°. A table, listing all three hyper-
parameters for all models, can be found in the Appendix. We can
see negative correlations between M8C and Mf for all three experi-
ments. This is expected because as the model becomes better, the

mean of the differences between confidence scores of the ground-
truth feedback type and the user feedback type should increase, but
the mean of the confidence scores of user’s no feedback in the ENS
test set should decrease. To quantify the correlation, we compute
Spearman’s rank correlation coefficient r between the two metrics.
For the pair Mg - M66, we find r = —0.90 (p-value: 1 X 10_7), -0.67
(p-value: 2.4 X 1073), —0.80 (p-value: 1.6 x 107°) for SLA, n; and
ng variation experiments, respectively. We can also combine all
the models from three different variation experiments to get 54
models or data points to compute r, and we find r = —0.91 (p-value:
< 1x 1078). We present another example for the pair M3C - M7G in
the bottom three panels in Fig. 3, where M3C is the accuracy between
user feedback type ¢ and model predicted feedback type ¢/, and M7G
is the mean of the confidence scores on ground-truth feedback type,
and we see positive correlations for all three experiments. Again,
as the model gets better, both MSC and M7G should increase. We find
r = 0.79 (p-value: 7.2 X 107%), 0.53 (p-value: 0.022), 0.80 (p-value:
1.4 X 107°) for SLA, n; and ng variation experiments, respectively.
Considering all 54 models, for this pair, we find r = 0.87 (p-value:
< 1x 1078). We also note that the best models found for all three
variation experiments, based on MC metrics in Fig. 2, are also the
best models found using MC metrics. For example, for n; varia-
tion experiment, we see the best results around n; = 5 for both
MS and M€ metrics. Therefore, we can conclude that the M€ met-
rics are indeed useful in determining the optimal values for these
hyper-parameters.

Considering all 54 models, we computed r for all 77 pairs between
M and MC. The results for r for all those pairs are shown in Fig. 4.
The statistically significant correlations that have p-values less than
or equal to 0.05 are shown using the black font color, and we find
41 such pairs. Out of those 41 pairs, there are 10 pairs for which
|r| > 0.7 with p-values < 1 x 10~ (highlighted using the black box
in Fig. 4) that we reckon point to strong correlations.
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Figure 3: Top panels: Normalized Mgc and M6G for all models generated by varying three different hyper-parameters: (i) Structure
learning algorithm (SLA), (ii) number of levels used while discretizing continuous variables to discrete variables, n;, and (iii)
number of samples in the training data set, ng, with a common x-axis indicating the Model Index explained in the text. Bottom
panels: Normalized M3C and MY for all models generated by varying three different hyper-parameters with a common x-axis.
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Figure 4: Results for Spearman’s rank correlation coefficient
r between all 77 MG and M€ metrics pairs. The color scale on
cells indicates r with green as r = 1, red as r = —1 and white as
r = 0. The p-value for each r statistic is indicated using three
font colors in each cell, with labels “low" (black) as p-value
< 0.05, “med" (gold) as 0.05 < p-value < 0.1 and “high" (grey)
as p-value > 0.1. Cells that are highlighted within black box
refer to pairs with |r| > 0.7 with p-values < 1 x 1077,

On those ten strongly correlated pairs, we see six MG metrics:
(i) MY, (i) MY, (ii)) MT, (iv) ME, (v) MC, and (vi) MY and five
ME metrics: (i) MS, (i) M, (iii) MS, (iv) MS, and (v) MS. This
means that we can rely on those five MC metrics (in the absence
of ground-truth data) only if the true success metric to measure

the model performance is one (or more) of those six MG metrics.
For example, if the objective is to maximize the mean of ROC AUC
across all feedback types (M5G ), as if we had ground-truth data, then
we can proxy that using one of the three non-ground-truth based
metrics M4c, M7c or MSc . Since we see the highest correlation of
M5G with ng , which is the mean of the confidence scores on user
feedback in the ENS test set, we recommend to use Mg . However, if
the objective is to optimize some other metrics (from MZG , M3G , Mf,
Msc, M66, Mg}), then Fig. 4 can be used to select the most reasonable
MC choice.

7 CONCLUSIONS

We proposed a way to leverage a BBN model to establish confidence
scores for crowdsourced voice feedback (CVF) data. We carried
out several experiments by varying different hyper-parameters,
such as SLA, nj and ns, and presented their effects on the model
performance using some existing and new metrics identified in
this paper. We discussed 11 metrics that can be computed without
ground-truth data (MC metrics), and merely using the CVF data.
We studied correlations of those 11 metrics with 7 ground-truth
based metrics (MG, for which we curated a small ground-truth
test set), where all those metrics were computed while carrying
out hyper-parameter experiments mentioned above. On those 77
pairs, we found 10 metrics pairs between MC-MC that had strong
correlations with absolute value of Spearman’s rank correlation
greater than 0.7. Using the correlation results, we showed that one
or more of five M€ metrics (MSC, M4C, MSC, M7C, and MSC) can be used
to measure the model performance in the absence of the ground-
truth data, depending on what ground-truth metrics (such as (i)
mean of precision, (ii) mean of recall, (iii) mean of F1, (iv) mean of
ROC AUC, across all feedback types, and (v) mean of differences in
confidence scores between ground-truth label and user feedback



DeMalL’21, August 2021, Virtual

label, and (vi) mean of confidence scores on ground-truth label) we
want to optimize.
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Table 3: List of hyper-parameters for all models generated.

Model Index SLA ny ns
1 chow.liu 5  2x10°
2 fast.iamb 5  2x10°
3 gs 5  2x10°
4 h2pc 5 2x10°
5 hc 5  2x10°
6 iamb 5  2x10°
7 iamb. fdr 5  2x10°
8 inter.iamb 5  2x10°
9 mmhc 5  2x10°
10 mmpc 5  2x10°
11 pc.stable 5  2x10°
12 rsmax2 5  2x10°
13 si.hiton.pc 5 2x10°
14 tabu 5  2x10°
15 inter.iamb 1  2x10°
16 inter.iamb 2 2x10°
17 inter.iamb 3 2x10°
18 inter.iamb 4  2x10°
19 inter.iamb 5  2x10°
20 inter.iamb 6  2x10°
21 inter.iamb 7  2x10°
22 inter.iamb 8  2x10°
23 inter.iamb 9  2x10°
24 inter.iamb 10 2 x10°
25 inter.iamb 11 2x10°
26 inter.iamb 12 2x10°
27 inter.iamb 13 2x10°
28 inter.iamb 14 2x10°
29 inter.iamb 15 2x10°
30 inter.iamb 16 2x10°
31 inter.iamb 17 2x10°
32 inter.iamb 18 2x10°
33 inter.iamb 19 2x10°
34 inter.iamb 5 1x10°
35 inter.iamb 5 2x10%
36 inter.iamb 5 5x10°
37 inter.iamb 5 7x10°
38 inter.iamb 5 8x10°
39 inter.iamb 5 9x10°
40 inter.iamb 5  1x10%
41 inter.iamb 5  1.1x10*
42 inter.iamb 5 1.2x10%
43 inter.iamb 5  1.5x10%
44 inter.iamb 5  2x10*
45 inter.iamb 5  5x10%
46 inter.iamb 5  7x10%
47 inter.iamb 5  1x10°
48 inter.iamb 5  2x10°
49 inter.iamb 5 5% 10°
50 inter.iamb 5  7x10°
51 inter.iamb 5  1x10°
52 inter.iamb 5  2x10°
53 inter.iamb 5  5x10°
54 inter.iamb 5  7.5x10°
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