
CDCGen: Cross-Domain Conditional Generation via
Normalizing Flows and Adversarial Training

Hari Prasanna Das, Ryan Tran, Japjot Singh, Yu-Wen Lin and Costas J. Spanos
{hpdas,bobotran,calzoom,yuwen.lin,spanos}@berkeley.edu

Department of Electrical Engineering and Computer Sciences, UC Berkeley
Berkeley, CA, USA

ABSTRACT
How to generate conditional synthetic data for a domain without
utilizing information about its labels/attributes? Our work presents
a solution to the above question. We propose a transfer learning-
based framework utilizing normalizing flows, coupled with both
maximum-likelihood and adversarial training. We model a source
domain (labels available) and a target domain (labels unavailable)
with individual normalizing flows, and perform domain alignment
to a common latent space using adversarial discriminators. Due
to the invertible property of flow models, the mapping has exact
cycle consistency. We also learn the joint distribution of the data
samples and attributes in the source domain by employing an en-
coder to map attributes to the latent space via adversarial training.
During the synthesis phase, given any combination of attributes,
our method can generate synthetic samples conditioned on them
in the target domain. Empirical studies confirm the effectiveness of
our method on benchmarked datasets. We envision our method to
be particularly useful for synthetic data generation in label-scarce
systems by generating non-trivial augmentations via attribute and
component transformations. These synthetic samples will introduce
more entropy into the label-scarce domain than their geometric
and photometric transformation counterparts, helpful for robust
downstream tasks.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Unsupervised Style Transfer, Conditional Synthetic Data Genera-
tion, Domain Translation

ACM Reference Format:
Hari Prasanna Das, Ryan Tran, Japjot Singh, Yu-Wen Lin and Costas J.
Spanos. 2018. CDCGen: Cross-Domain Conditional Generation via Normal-
izing Flows and Adversarial Training. In KDD ’21: Knowledge Discovery and
Data Mining, August 14–18, 2021, Virtual Conference. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/1122445.1122456

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Conference
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
A large majority of the real-world signals obtained are unlabeled,
and require significant human effort or machine intelligence for
labeling. This has led to a surge in popularity of unsupervised learn-
ing algorithms. A prominent branch of such algorithms, generative
modeling, has proven to be efficient in transferring knowledge
gained from one (or multiple) domain(s) to other domain(s). Vari-
ants of such approaches include cross-domain translation [19, 42],
domain adaptation for classification [17, 44] etc. By jointlymodeling
the data samples and their labels/attributes, variations of condi-
tional synthesis methods have been proposed [26, 29, 30], which
during inference phase, can generate synthetic conditional samples.
We combine both the above avenues of cross-domain translation
along with conditional synthesis and propose a framework capable
of generating conditional samples for a domain without utilizing
its labels/attributes for training.

Prior works on cross-domain translation involve construction
of a mapping between two (or more) unpaired domains. The trans-
lation consistency is maintained by introducing some form of in-
ductive bias terms such as cycle consistency [42], semantic con-
sistency [33], entropic regulation [5] etc. Most of the proposed
models for domain translation are generative adversarial network
(GAN) [14] based and involve many-to-one/one-to-many mappings,
making the cycle consistency only approximate. A recent work,
Alignflow [15] achieves exact cycle consistency by modeling the
domains with normalizing flows via a common latent space. Nor-
malizing flows [10, 22] are a class of generative models which map
an unknown and complex data distribution to a latent space with
a simple (e.g. standard gaussian) prior distribution via invertible
mappings. Another benefit with having flow model mappings is
that they offer a rich latent space, which is suitable for a number of
downstream tasks, such as semi-supervised learning [30], synthetic
data augmentation and adversarial training [4], text analysis and
model based control etc. Conditional synthesis has been explored
by CGAN [29] by augmenting the conditions with the data and
processing it via GAN and by ACGAN [30] by introducing an auxil-
liary classifier for the conditions. This becomes challenging for flow
models which are bijective in nature, and hence indirect methods
must be adopted to jointly model data and the conditions. Liu et al.
[26] propose an encoder-discriminator-classifier-decoder based ap-
proach on flow latent space which can generate synthetic samples
for a domain by passing its conditions via encoders to the data via
a flow network. They show improvements in varying the quality
of generated images for handles relating to various features.

We present CDCGen, a generative framework that is capable
of transferring knowledge across multiple domains and using it to
generate synthetic samples for domains lacking information about

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

KDD ’21, August 14–18, 2021, Virtual Conference Das, et al.

Table 1: Comparison of CDCGen with state-of-the-art cross domain translation and conditional syntheis models. Across the
board, CDCGen features all the advantages over other models.

Model Cross-Domain
Translation

Cycle Consistency Independent Conditional
Synthesis

Availability of Latent Space Em-
beddings

XGAN [33] ✓ Approximate ✗ ✗

CycleGan [42] ✓ Approximate ✗ ✗

Taigman et al. [36] ✓ Approximate ✗ ✗

Alignflow [15] ✓ Exact ✗ ✓

CGAN [29] ✗ – ✓ ✗

ACGAN [31] ✗ – ✓ ✗

CAGlow [26] ✗ – ✓ ✓

CDCGen (ours) ✓ Exact ✓ ✓

labels/attributes. We model the label/attribute scarce domain as
the target, and a related domain with available information about
its labels/attributes as the source. We model the source and target
domain via normalizing flows with a common latent space. For
conditional synthesis, we introduce a variant of ACGAN by using
it on the learned latent space rather than the data space, and train
it with only the data and available labels from the source domain.
The features can be manipulated easily in the latent space, which
is learnt by the conditional synthesis network. During inference
phase, CDCGen offers independently specifying conditions, encod-
ing them to a common latent space and moving through the inverse
flow to generate conditional synthetic samples in the target domain.
Table 1 summarizes the comparison between CDCGen and other
related models for different feature availability. CDCGen comes out
to be an amalgamation of all features available among the model
selections.

We establish the CDCGen framework and conduct empirical
evaluations with benchmarked image datasets. CDCGen shows en-
couraging performance in domain alignment, as well as conditional
generation for all source and target combinations.

2 PRELIMINARIES
Flow-based generative models and generative adversarial networks
constitute the major building blocks for proposed CDCGen. In this
section, we will briefly describe the functioning of both types of
generative models. We will also iterate through the related works
in the space of cross-domain translation and conditional synthesis.

2.1 Flow-based Generative Models
Let X be a high-dimensional random vector with unknown true
distribution 𝑝 (𝑥). The following formulation is directly applicable
to continuous data, and with some pre-processing steps such as
dequantization [16, 35, 39] to discrete data. Let Z be the latent
variable with a known standard distribution 𝑝 (𝑧), such as a standard
multivariate gaussian. Using an i.i.d. dataset D, the target is to
model 𝑝𝜽 (𝑥) with parameters 𝜽 . A flow, F is defined to be an
invertible transformation that maps observed data X to the latent
variable Z. A flow is invertible, so the inverse function T maps Z
to X, i.e.

Z = F (X) = T−1 (X) and X = T (Z) = F −1 (Z) (1)

The log-likelihood can be expressed as,

log 𝑝𝜽 (𝑥) = log𝑝 (𝑧) + log
����det (𝜕F (𝑥)𝜕𝑥𝑇

)���� (2)

where
𝜕F (𝑥)
𝜕𝑥𝑇

is the Jacobian of F at 𝑥 . The training of flow models
is accomplished via maximum-likelihood estimation. Confirming
with the qualifying properties for a flow as above, different types
of flow models have been introduced to efficiently estimate the
distribution density and generate synthetic samples [3, 9, 10, 22].

2.2 Generative Adversarial Networks (GANs)
GANs [14] are a class of implicit generative models which work
based on the principles of a mini-max game. It involves a generator
G which is tasked to generate synthetic samples from standard
noise distribution and a critic C which learns to discriminate the
samples generated by G and samples from original data distribution
𝑝𝑑𝑎𝑡𝑎 . The training objective for a GAN is given by,

min
G

max
C
L(C,G) =E𝑥∼𝑝𝑑𝑎𝑡𝑎 [logC(𝑥)]

+E𝑧∼standard noise distribution [log(1 − C(G(𝑧)))]

At nash equillibrium, the generator and critic are optimal, and the
generator is capable of generating samples resembling original data.
GAN based models have been particularly successful in generating
high-fidelity images [2, 21], manipulating features of images to
generate custom samples [32], audio generation [11, 12], video
generation [37] etc. Despite the potential of GANs in generating
qualitative samples, they are hard to train due to the mini-max
optimization. Unlike flow models, they lack a latent space suitable
for a number of downstream applications. Another major problem
with GANs is mode collapse, where the generator starts producing
the same output (or a small set of outputs) over and over again.
A number of remedies have been proposed to tackle this over the
years [1, 28, 34].

3 RELATEDWORK
We discuss the related work from two perspectives relevant to
the CDCGen framework, namely cross-domain translation and
conditional synthesis.

CDCGen: Cross-Domain Conditional Generation via Normalizing Flows and Adversarial Training KDD ’21, August 14–18, 2021, Virtual Conference

3.1 Cross-Domain Translation
Cross-domain translation involves construction of mappings be-
tween two or more domains, by training on unpaired data samples
in both the domains. Such a problem is under-constrained and
involves aligning the domains in feature space via mappings. A
number of research in this space [25, 33, 38, 41, 42] introduce a
form of cycle consistency loss which ensures that by translating an
image from one domain to another domain via mappings and then
applying reverse mappings to translate back yields the same im-
age. XGAN [33] uses additional loss terms to incorporate semantic
consistency across domains, to match the subspace for embedding
from multiple domains and prior knowledge via pre-trained models.
However, since all the above models involve GAN based architec-
tures, they lack a latent space embedding useful for downstream
manipulation tasks [22]. Moreover, since the mappings are not guar-
anteed to be invertible, the cycle consistency is only approximate.

Alignflow [15] involves modeling each of the domains via nor-
malizing flow mappings to a common latent space [6, 7, 10]. It
has a hybrid training objective constituting both maximum likeli-
hood estimation and adversarial training. Moreover, since flows are
invertible mappings, Alignflow achieves exact cycle consistency.
However, flow models, by virtue of the training procedure, face a
challenge to align domains which are apart in terms of semantics
and/or style, apparent from the generated samples quality in com-
parison with GANs. For CDCGen, we use the best of both worlds:
flow model mappings for the domains to a common latent space,
along with loss terms useful to align the domains in the embedding
space. CDCGen offers a rich latent space, which is further utilized
for conditional synthesis in label/attribute scarce domains.

3.2 Conditional Synthesis
Conditional generative models have been introduced to generate
desired synthetic data by incorporating conditions information in
model design. From CGAN [29] which is a modification of conven-
tional GANs and works by feeding the label/attribute information
to the generating block, conditional synthesis has seen different
algorithmic variations [18, 30, 40]. A notable work, ACGAN [30]
employs an auxilliary classifier for the discriminator to classify
the class labels. A recent work, CAGlow [26] proposes a variant of
ACGAN with an encoder-decoder network, adding ability to model
unsupervised conditions. Additionally, above works deal with con-
ditional generation in a single domain. We use a variant of ACGAN
over a shared latent space for multiple domains, thereby transfer-
ring knowledge from label-rich domains to perform conditional
synthesis in label-scarce domains.

4 THE CDCGEN FRAMEWORK
In this section, we will present the CDCGen framework capable
of generating conditional synthetic samples for a domain in an
unsupervised setting. We select a domain with availability of in-
formation about the labels/attributes (namely, the source domain)
and has shared attributes with the domain for which we don’t have
information about labels/attributes (namely, the target domain).
Under this setting, the framework consists of two major networks:
one for domain alignment and one for conditional synthesis. We
consider the case of two domains, but under the assumption of

having shared attributes between the source and target domains,
the proposed method generalizes to multiple domains seamlessly.

4.1 Domain Alignment
The first step in CDCGen is to align the source and target domains.
Let the source and target domain be denoted by D𝑠 and D𝑡 with
unknownmarginal density 𝑝𝑠 and 𝑝𝑡 respectively. Both the domains
are mapped via invertible transformations (normalizing flows) F𝑠
and F𝑡 to a common latent space𝑍 , which serves as a shared feature
space for alignment. We assume the shared latent space follows a
normal gaussian distribution 𝑝 (𝑧), common for training of most
of the state-of-the-art flow models. The relationship between the
sample space and latent space can be represented as,

D𝑠
F𝑠−−→ 𝑍

F𝑡←−− D𝑡

Note that the invertible nature of the flow model is helpful in two
different ways,
• It provides a mechanism to translate between source and
target domains, with invertible mappings F𝑠→𝑡 = F −1𝑡 ◦ F𝑠
and F𝑡→𝑠 = F −1𝑠 ◦ F𝑡 .
• It helps achieve exact cycle consistency (as introduced in
CycleGAN [42] to ensure accurate representation of the map-
pings) between the domains, since F𝑠→𝑡 ◦ F𝑡→𝑠 = F −1𝑡 ◦
F𝑠 ◦ F −1𝑠 ◦ F𝑡 = 𝐼 , where 𝐼 is the identity matrix.

We use a hybrid training objective involving both maximum
likelihood estimation and adversarial training. Flow models are
trained with an unsupervised maximum likelihood loss, with a
normal gaussian prior on the latent space 𝑍 . Since there are two
flowmodels involved for the two domains, the maximum likelihood
loss is expressed as,

L𝑀𝐿𝐸 (F𝑠) + L𝑀𝐿𝐸 (F𝑡)
For cross-domain mappings, adversarial loss terms are introduced.
These terms introduce inductive bias required for cross domain
translation [42]. We employ critics C𝑠 and C𝑡 for source and tar-
get domains respectively, which distinguish between real samples
(sampled from the same domain) vs. generated samples (obtained
via cross-domain mappings). For example, the adversarial loss for
source domain can be expressed as,

L𝐴𝐷𝑉 (C𝑠 , F𝑡→𝑠) =E𝑥𝑠∼𝑝𝑠 [logC𝑠 (𝑥𝑠)]
+E𝑥𝑡∼𝑝𝑡 [log(1 − C𝑠 (F𝑡→𝑠 (𝑥𝑡)))]

We also use a domain-adversarial loss [13] which forces the embed-
dings learnt by the flowmodelsF𝑠 andF𝑡 to lie in the same subspace.
This is achieved by training a classifier C𝐷𝐴𝐿 which takes the latent
space embeddings for each domain and classifies the sample to be
coming from D𝑠 or D𝑡 . It is trained in an adversarial manner, with
a classification loss function ℓ (·, ·), such as cross-entropy. L𝐷𝐴𝐿

can be expressed as,

L𝐷𝐴𝐿 (F𝑠 , C𝐷𝐴𝐿) = E𝑥𝑠∼𝑝𝑠 ℓ (D𝑠 , C𝐷𝐴𝐿 (F𝑠 (𝑥𝑠)))
Finally, for domain alignment, the overall loss term is,

L𝐷𝑜𝑚𝑎𝑖𝑛 𝐴𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 (F𝑠 , F𝑡 , C𝑠 , C𝑡 , C𝐷𝐴𝐿 ; 𝜆𝑠 , 𝜆𝑡 , 𝛾𝑠 , 𝛾𝑡) =
L𝐴𝐷𝑉 (C𝑠 , F𝑡→𝑠) + L𝐴𝐷𝑉 (C𝑡 , F𝑠→𝑡) + 𝛾𝑠L𝐷𝐴𝐿 (F𝑠 , C𝐷𝐴𝐿)

+𝛾𝑡L𝐷𝐴𝐿 (F𝑡 , C𝐷𝐴𝐿) − 𝜆𝑠L𝑀𝐿𝐸 (F𝑠) − 𝜆𝑡L𝑀𝐿𝐸 (F𝑡)

KDD ’21, August 14–18, 2021, Virtual Conference Das, et al.

Normalizing Flow
for target domain

Target Critic

Normalizing Flow
for source domain

Source Critic

Forward flow

Inverse flow

Shared latent
space (Z)

Forward flow

Inverse flow

Target Domain
(Attributes unavailable)

Source Domain
(Attributes available)

Conditional latent space (Z*)One-hot encoded conditions

Encoder

𝜖

Attributes

1

0

1

0

1

Auxiliary
Classifier

Critic
(Real/Generated?)

Parameter
Sharing

Domain Alignment
Networks

Conditional Synthesis
NetworksSource

Attributes

(a) CDCGen Training Schematic

Normalizing Flow
for target domain

Target Critic

Normalizing Flow
for source domain

Source Critic

Forward flow

Inverse flow

Shared latent
space (Z)

Forward flow

Inverse flow

Target Domain
(Attributes unavailable)

Source Domain
(Attributes available)

Conditional latent space (Z*)One-hot encoded conditions

Encoder

𝜖

Attributes

1

0

0

0

0

Custom
Attribute

Combinations

Conditional Synthesis
Networks

Domain Alignment
Networks

(b) CDCGen Inference Schematic

Figure 1: Illustration of training and inference methods in CDCGen. The networks inside the dashed box are for domain
alignment (Sec 4.1) and those outside are for conditional synthesis (Sec 4.2).

where, hyperparameters 𝜆𝑠 and 𝜆𝑡 dictate the relative contribution
of maximum likelihood loss, and 𝛾𝑠 and 𝛾𝑡 correspond to contribu-
tion of domain adversarial loss, both as compared to the adversarial
loss. The objective is minimized w.r.t. the parameters of the flow
models F𝑠 and F𝑡 and maximized w.r.t. parameters of C𝑠 , C𝑡 and
C𝐷𝐴𝐿 . This procedure is illustrated in the dashed box in Fig. 1(a).

4.2 Conditional Synthesis
For conditional synthesis, we propose a variant of ACGAN [31].
Instead of using class/attribute conditioning on the sample space
as done in ACGAN, we use it in the shared latent space. Under
the setting of our problem, we don’t have any information about
the labels/attributes in the target domain. So, for the conditional
synthesis part, only the attributes available from the source domain
are used for training.

We denote the available source attributes/conditions as 𝑐𝑠 ∼
𝑝 (𝑐𝑠), represented as one-hot encodings. Our network consists of
an encoder to model the conditions, a critic to differentiate between
the real and generated latent vectors, and an auxiliary classifier
to classify the encoded conditions. We will introduce each of the
above components and their associated loss functions separately.

Encoder: An encoder network 𝐸 encodes the conditions (𝑐𝑠 , 𝜖)
into a latent space 𝑍 ∗ (separate from the shared latent space 𝑍

for aligned domains), where 𝜖 is sampled from standard gaussian
distribution (𝑝 (𝜖)) and is helpful for incorporating stochastic be-
havior among condition vectors. Let the distribution for the above
mentioned latent space be denoted as 𝑝∗ (𝑧). Our objective is to
minimize the Jensen-Shannon (JS) divergence between the encoded
distribution 𝑝∗ (𝑧) and the shared latent distribution 𝑝 (𝑧) for aligned

domains D𝑠 and D𝑡 . So, the encoder loss is represented as,

L𝐸 = E𝜖∼𝑝 (𝜖),𝑐𝑠∼𝑝 (𝑐𝑠) [logC(𝐸 (𝑐𝑠 , 𝜖))]

where, C is a critic, more about which we describe now.
Critic: A critic C discriminates between the latent vectors com-

ing from generated conditional distribution 𝑝∗ (𝑧) and real shared
latent distribution 𝑝 (𝑧) for aligned domains. This is an adversarial
loss which is trained so as it is unable to distinguish the latent
vectors at equilibrium, thus enabling the encoder 𝐸 to generate
latent vectors close to the real shared latent distribution 𝑝 (𝑧). The
loss function for C is,

L𝐶𝑅𝐼𝑇 𝐼𝐶 = E𝑧∼𝑝∗ (𝑧) [logC(𝑧)] + E𝑧∼𝑝 (𝑧) [1 − logC(𝑧)]

Classifier: A classifier takes the latent vectors (𝑧 ∼ 𝑝∗ (𝑧) and
𝑧 ∼ 𝑝 (𝑧)) as input and classifies the conditions (𝑐𝑠). The classifier
loss is a cross entropy loss between the predicted and true condi-
tions. If the class posterior probabilities are 𝑞(𝑐𝑠 |𝑧), the classifier
loss function can be expressed as,

L𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅 =E𝑧∼𝑝∗ (𝑧),𝑐𝑠∼𝑝 (𝑐𝑠)𝑞(𝑐𝑠 |𝑧)
+E𝑧∼𝑝 (𝑧),𝑐𝑠∼𝑝 (𝑐𝑠)𝑞(𝑐𝑠 |𝑧)

The overall loss function for the conditional synthesis part is,

L𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑆𝑦𝑛𝑡ℎ𝑒𝑠𝑖𝑠 =𝛽𝐸L𝐸 + 𝛽𝐶𝑟L𝐶𝑅𝐼𝑇 𝐼𝐶
+𝛽𝐶𝑙L𝐶𝐿𝐴𝑆𝑆𝐼𝐹𝐼𝐸𝑅

where 𝛽𝐸 , 𝛽𝐶𝑟 , 𝛽𝐶𝑙 are hyperparameters. The critic and the classifier
networks share their parameters except for their output blocks.
Conditional synthesis procedure is illustrated in Fig. 1(a).

CDCGen: Cross-Domain Conditional Generation via Normalizing Flows and Adversarial Training KDD ’21, August 14–18, 2021, Virtual Conference

(a) Result with MNIST as source and USPS as target (b) Result with USPS as source and MNIST as target

Figure 2: Results for domain alignment between source and target domains. The top row has original samples from the source
domain. The middle row is the corresponding latent space mapping and the bottom row is the sample obtained by translating
it to the target domain. The USPS images are slightly blurred due to the upscaling applied as standard pre-processing.

4.3 Inference
CDCGen can generate conditional samples in the target domain,
even when the training process does not utilize its class/attribute
information. To generate samples with conditions 𝑐𝑠 , a latent vector
𝑧 is generated by encoding the one-hot conditions 𝑐𝑠 and 𝜖 ∼ 𝑝 (𝜖)
via the encoder network, i.e. 𝑧 = 𝐸 (𝑐𝑠 , 𝜖). Then the latent vector 𝑧 is
passed via the inverse flow F −1𝑡 to generate the desired sample in
the target domain, i.e.F −1𝑡 (𝑧). The inference schematic is illustrated
in Fig. 1(b).

5 EXPERIMENTS
In this section, we empirically evaluate CDCGen for synthetic gen-
eration in label scarce domains.

Datasets:We perform experiments on 2 standard image datasets
for digits, namely MNIST [24] and USPS. MNIST contains 60, 000
training and 10, 000 test images with ten classes corresponding to
digits from 0 to 9. USPS has 7291 training and 2007 test data with
the same classes as MNIST. To address this imbalance, for each
domain, we sample 542 images from the original training set for
each class to form the new training set. To form the test set, we
sample 147 images from the original test sets for each class. We
resize all the images to 32 × 32 for training and synthesis.

Source and Target Domain Combinations:We consider two
cases, first with MNIST as the source and USPS as the target domain,
and second, with the roles interchanged, i.e. USPS as the source and
MNIST as the target. We report results for domain alignment and
as well as subsequent conditional synthesis in the target domain,
all while not using any labels from that domain.

Networks:We use architecture from RealNVP [10] for each of
the domain flows (F𝑠 and F𝑡). Typical configurations for RealNVP
can be specified as a tuple comprising 𝑁𝑠𝑐𝑎𝑙𝑒𝑠 (number of scales),
𝑁𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 (number of channels) in the intermediate layers, and
𝑁𝑏𝑙𝑜𝑐𝑘𝑠 (number of residual blocks in the scaling and translation
networks of the coupling layers). For MNIST↔ USPS case, both F𝑠
and F𝑡 are set to RealNVP(2, 64, 8). The critics (C𝑠 and C𝑡) used con-
volutional discriminators from PatchGAN [19] , each with 16 filters
in the critic’s first convolutional layer. For conditional synthesis, we
concatenate the one-hot vector of labels with components of ran-
dom noise as input to the encoder. The vector then passes through
one fully-connected layer and eight transposed convolutional layers
with upsampling scale 2, 2, 2, 2, 2, 1, 1, 1 and channel sizes 256, 1024,
512, 256, 128, 64, 32, 16 respectively. The supervision block contains

four convolutional layers with stride 2 and channel sizes 64, 128,
256, 512. This is followed by two separate fully-connected layers
for each network head, one for outputting probabilities of real or
fake and the other for classifying the one-hot encoded conditions.

Optimizer: For training the domain alignment network, we use
the Adam optimizer with 𝛽1 = 0.5, 𝛽2 = 0.999, and learning rate
1 · 10−6. For training the conditional synthesis network, we use
the Adam optimizer with 𝛽1 = 0.5, 𝛽2 = 0.999, and learning rate
2 · 10−5.

5.1 Domain Alignment
In this section we present the results for domain alignment between
source and target combinations. Fig. 2(a) shows the source MNIST
samples and corresponding USPS samples by translating it via the
forward source and inverse target flows. The middle sample is
visualization of corresponding latent space sample. Fig. 2(b) depicts
the same with USPS as the source and MNIST as the target. It can
be observed that the class identity is preserved with the translation
with the style adapted for the target domains. The sharpness of
the translated samples are compromised, which is a result of the
flow model assigning some probability mass to all the samples it is
fed. This is unlike pure GAN based models which selectively assign
probability mass to meaningful samples.

Another interesting observation is the appearance of digit class
identity in latent space visualizations. This is particularly useful
from the perspective of CDCGen, since the conditional synthesis
network works based on the latent space mappings from both the
domains.

We present the t-SNE embeddings for the shared latent space in
our proposed domain alignment network for MNIST and USPS in
Fig. 3. It can be observed that the visualization has distinct clusters
for each digit class, but the embeddings from both the source and
target domain are close and belong to the same cluster for the overall
digit class clustering. The visualization allows us to infer that the
latent space has learned a subspace corresponding to each digit,
and interpolating across this subspace is effectively a conditional
feature-preserving domain transfer.

5.2 Conditional Synthesis
We trained the conditional synsthesis part of CDCGen (Section 4.2)
with source labels to generate conditional synthetic samples in the
target domain. Fig. 4(a) shows the samples generated with USPS

KDD ’21, August 14–18, 2021, Virtual Conference Das, et al.

Figure 3: t-SNE representation of shared latent space for MNIST↔ USPS. For each digit, points for USPS are visualized with
the darker colors, and points with lighter colors correspond to MNIST.

(a) Generated samples for USPS as target (b) Generated samples for MNIST as target

Figure 4: Conditional synthetic samples generated by CDCGen. The rows represent conditioned digit classes (0-9) and the
columns include more samples for each class.

as the target domain and Fig. 4(b) shows the samples generated
with MNIST as the target. Each row corresponds to the digit classes
which are assigned as conditions. It can be observed that CDCGen
is able to generate synthetic samples belonging to the digit class as
conditioned. There are also variations among the samples across
different columns which shows the stochastic nature of generation
by CDCGen. The compromise in sharpness of the samples generated
can be observed in the generated samples too, and is owed from
the domain alignment mappings by flow models.

6 CONCLUSIONS
CDCGen, a generative framework capable of generating conditional
synthetic samples for domains without the requirement of obtain-
ing its labels/attributes was presented. We also conducted empirical
studies with standard image datasets to observe feature transfer
and independent conditional generation. In the future, making the
conditional generation models across multiple domains can be stud-
ied with varying levels of label availability (few-shot learning) for
target domain. CDCGen can also be adapted for other modalities of

data including audio and tabular data. It can also be used alongside
real-world applications [8, 20, 23, 27, 43] where having access to
diverse conditional data is important, but is hard to obtain, hence
the need for synthetic data.

ACKNOWLEDGMENTS
This research is funded by the Republic of Singapore’s National
Research Foundation through a grant to the Berkeley Education
Alliance for Research in Singapore (BEARS) for the Singapore-
Berkeley Building Efficiency and Sustainability in the Tropics (Sin-
BerBEST) Program. BEARS has been established by the University
of California, Berkeley as a center for intellectual excellence in
research and education in Singapore.

REFERENCES
[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein gan.

arXiv preprint arXiv:1701.07875 (2017).
[2] Andrew Brock, Jeff Donahue, and Karen Simonyan. 2019. Large Scale GAN

Training for High Fidelity Natural Image Synthesis. In International Conference
on Learning Representations. https://openreview.net/forum?id=B1xsqj09Fm

https://openreview.net/forum?id=B1xsqj09Fm

CDCGen: Cross-Domain Conditional Generation via Normalizing Flows and Adversarial Training KDD ’21, August 14–18, 2021, Virtual Conference

[3] Ricky TQ Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacob-
sen. 2019. Residual Flows for Invertible Generative Modeling. arXiv preprint
arXiv:1906.02735 (2019).

[4] Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas
Usunier. 2017. Parseval networks: Improving robustness to adversarial examples.
In Proceedings of the 34th International Conference on Machine Learning-Volume
70. JMLR. org, 854–863.

[5] Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. 2017.
Joint distribution optimal transportation for domain adaptation. In Advances in
Neural Information Processing Systems. 3730–3739.

[6] Hari Prasanna Das, Pieter Abbeel, and Costas J Spanos. 2019. Dimensionality
reduction flows. arXiv preprint arXiv:1908.01686 (2019), 1–10.

[7] Hari Prasanna Das, Pieter Abbeel, and Costas J Spanos. 2019. Likelihood Con-
tribution based Multi-scale Architecture for Generative Flows. arXiv preprint
arXiv:1908.01686 (2019).

[8] Hari Prasanna Das, Ioannis C Konstantakopoulos, Aummul Baneen Manasawala,
Tanya Veeravalli, Huihan Liu, and Costas J Spanos. 2019. A novel graphical
lasso based approach towards segmentation analysis in energy game-theoretic
frameworks. In 2019 18th IEEE International Conference On Machine Learning And
Applications (ICMLA). IEEE, 1702–1709.

[9] Laurent Dinh, David Krueger, and Yoshua Bengio. 2014. Nice: Non-linear inde-
pendent components estimation. arXiv preprint arXiv:1410.8516 (2014).

[10] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. 2016. Density estimation
using Real NVP. CoRR abs/1605.08803 (2016). arXiv:1605.08803

[11] Chris Donahue, Julian McAuley, and Miller Puckette. 2018. Adversarial audio
synthesis. arXiv preprint arXiv:1802.04208 (2018).

[12] Jesse Engel, Kumar Krishna Agrawal, Shuo Chen, Ishaan Gulrajani, Chris Don-
ahue, and Adam Roberts. 2019. Gansynth: Adversarial neural audio synthesis.
arXiv preprint arXiv:1902.08710 (2019).

[13] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo
Larochelle, François Laviolette, Mario Marchand, and Victor Lempitsky. 2016.
Domain-adversarial training of neural networks. The Journal of Machine Learning
Research 17, 1 (2016), 2096–2030.

[14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672–2680.

[15] Aditya Grover, Christopher Chute, Rui Shu, Zhangjie Cao, and Stefano Ermon.
2019. AlignFlow: Cycle Consistent Learning from Multiple Domains via Normal-
izing Flows. arXiv preprint arXiv:1905.12892 (2019).

[16] Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. 2019.
Flow++: Improving Flow-Based Generative Models with Variational Dequantiza-
tion and Architecture Design. arXiv preprint arXiv:1902.00275 (2019).

[17] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko,
Alexei A Efros, and Trevor Darrell. 2017. Cycada: Cycle-consistent adversarial
domain adaptation. arXiv preprint arXiv:1711.03213 (2017).

[18] Seunghoon Hong, Dingdong Yang, Jongwook Choi, and Honglak Lee. 2018. In-
ferring semantic layout for hierarchical text-to-image synthesis. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 7986–7994.

[19] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. 2017. Image-to-
image translation with conditional adversarial networks. In Proceedings of the
IEEE conference on computer vision and pattern recognition. 1125–1134.

[20] Ming Jin, Ruoxi Jia, Hari Prasanna Das, Wei Feng, and Costas Spanos. 2018.
BISCUIT: Building Intelligent System CUstomer Investment Tool. In 10th Inter-
national Conference on Applied Energy (ICAE).

[21] Tero Karras, Samuli Laine, and Timo Aila. 2018. A style-based generator ar-
chitecture for generative adversarial networks. arXiv preprint arXiv:1812.04948
(2018).

[22] Durk P Kingma and Prafulla Dhariwal. 2018. Glow: Generative flow with in-
vertible 1x1 convolutions. In Advances in Neural Information Processing Systems.
10215–10224.

[23] Ioannis C Konstantakopoulos, Hari Prasanna Das, Andrew R Barkan, Shiying
He, Tanya Veeravalli, Huihan Liu, Aummul Baneen Manasawala, Yu-Wen Lin,
and Costas J Spanos. 2019. Design, benchmarking and explainability analysis of

a game-theoretic framework towards energy efficiency in smart infrastructure.
arXiv preprint arXiv:1910.07899 (2019).

[24] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-
based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–
2324.

[25] Ming-Yu Liu and Oncel Tuzel. 2016. Coupled Generative Adversarial Networks.
arXiv:1606.07536 [cs.CV]

[26] Rui Liu, Yu Liu, Xinyu Gong, Xiaogang Wang, and Hongsheng Li. 2019. Condi-
tional adversarial generative flow for controllable image synthesis. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. 7992–8001.

[27] Shichao Liu, Stefano Schiavon, Hari Prasanna Das, Ming Jin, and Costas J Spanos.
2019. Personal thermal comfort models with wearable sensors. Building and
Environment 162 (2019), 106281.

[28] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. 2016. Unrolled
generative adversarial networks. arXiv preprint arXiv:1611.02163 (2016).

[29] Mehdi Mirza and Simon Osindero. 2014. Conditional generative adversarial nets.
arXiv preprint arXiv:1411.1784 (2014).

[30] Augustus Odena. 2016. Semi-supervised learning with generative adversarial
networks. arXiv preprint arXiv:1606.01583 (2016).

[31] Augustus Odena, Christopher Olah, and Jonathon Shlens. 2017. Conditional image
synthesis with auxiliary classifier gans. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2642–2651.

[32] Alec Radford, Luke Metz, and Soumith Chintala. 2015. Unsupervised representa-
tion learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434 (2015).

[33] Amélie Royer, Konstantinos Bousmalis, Stephan Gouws, Fred Bertsch, Inbar
Mosseri, Forrester Cole, and Kevin Murphy. 2020. Xgan: Unsupervised image-to-
image translation for many-to-many mappings. In Domain Adaptation for Visual
Understanding. Springer, 33–49.

[34] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. 2016. Improved techniques for training gans. In Advances in neural
information processing systems. 2234–2242.

[35] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. 2017. Pix-
elCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likeli-
hood and Other Modifications. CoRR abs/1701.05517 (2017). arXiv:1701.05517
http://arxiv.org/abs/1701.05517

[36] Yaniv Taigman, Adam Polyak, and Lior Wolf. 2016. Unsupervised cross-domain
image generation. arXiv preprint arXiv:1611.02200 (2016).

[37] Sergey Tulyakov, Ming-Yu Liu, Xiaodong Yang, and Jan Kautz. 2018. Mocogan:
Decomposing motion and content for video generation. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 1526–1535.

[38] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. 2017. Adversarial
Discriminative Domain Adaptation. arXiv:1702.05464 [cs.CV]

[39] Benigno Uria, Iain Murray, and Hugo Larochelle. 2013. RNADE: The real-valued
neural autoregressive density-estimator. In Advances in Neural Information Pro-
cessing Systems. 2175–2183.

[40] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. 2018. High-resolution image synthesis and semantic manipulation
with conditional gans. In Proceedings of the IEEE conference on computer vision
and pattern recognition. 8798–8807.

[41] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. 2017. Dualgan: Unsuper-
vised dual learning for image-to-image translation. In Proceedings of the IEEE
international conference on computer vision. 2849–2857.

[42] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A. Efros. 2017. Un-
paired Image-to-Image Translation using Cycle-Consistent Adversarial Networks.
arXiv:1703.10593 [cs.CV]

[43] Han Zou, Jianfei Yang, Hari Prasanna Das, Huihan Liu, Yuxun Zhou, and Costas J
Spanos. 2019. Wifi and vision multimodal learning for accurate and robust device-
free human activity recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops. 0–0.

[44] Han Zou, Yuxun Zhou, Jianfei Yang, Huihan Liu, Hari Prasanna Das, and Costas J
Spanos. 2019. Consensus Adversarial Domain Adaptation. In AAAI Conference
on Artificial Intelligence 2019.

https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1606.07536
https://arxiv.org/abs/1701.05517
http://arxiv.org/abs/1701.05517
https://arxiv.org/abs/1702.05464
https://arxiv.org/abs/1703.10593

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Flow-based Generative Models
	2.2 Generative Adversarial Networks (GANs)

	3 Related Work
	3.1 Cross-Domain Translation
	3.2 Conditional Synthesis

	4 The CDCGen Framework
	4.1 Domain Alignment
	4.2 Conditional Synthesis
	4.3 Inference

	5 Experiments
	5.1 Domain Alignment
	5.2 Conditional Synthesis

	6 Conclusions
	Acknowledgments
	References

